http://keskustelu.skepsis.fi/Message/FlatMessageIndex/355465?page=2#363834

 


Stephen Hawkingin uusimman kirjan "Suuri suunnitelma" (The Grand Design, yh- dessä tieteiskirjailija Mlodinovin kanssa) varsinainen pläjäys,joka on esitetty lopussa kuin ohimennen, on,että gravitaatio olisi massaenergiaan ja liike-energiaan nähden negatiivista energiaa, ja maailmankaikkeuden kokonaisenergia olisi nolla.

Potentiaalienergia ei olisikaan silloin vain laskennallinen suure vaan "täyttä materi-aa", jota "kumotaan", kun esimerkiksi kappaletta nostetaan ylöspäin gravitaatioken- tässä, tai positiivista sähkövarausta siirretään niin ikään positiivisen jännitelähteen suuntaan. Ideologisesti kyseessä on jonkinlainen "kaksoisenergetismi", uusi fysiikan ideologia.

Kirja on kirjoitettu ennen Higgsin bosonin "ratkaisua", jonka Hawking ei uskonut olevan positiivinen (mutta uskoo niin nyt), "hyvissä ajoin" uudeksi vaihtoehtoiseksi maailmankuvaksi.Kirja kannattaa multiversumiteoriaa ja myötäilee joissakin asioissa "monimaailmatulkintaa", mutta ei tarkoita aivan samaa kuin Hugh Everett ja mormo- nit. Kirjassa hyväksytään jollakin tavalla Everettin opettajan John Wheelerin "ma-don- reiät", eikä siten kumota ehdottomasti (ymmär-tääkseni) "aikamatkailua". Tähän liittyen kirjassa esitetään useassa kohdassa, että "valon nopeus voidaan ylittää", esi-merkiksi kirjassa väitetään että Tsherenkovin valonsäteily ydinvoimaloissa johtuu siitä, että "elektronit liikkuvat vedessä valoa nopeammin" ja osa sähkökentän foto-neista ikään kuin jää niistä jälkeen.Tuosta sain ainakin minä väärän kuvan siitä, mitä haluttiin sanoa.Ainoankaan fysikaalisen olion nopeus ei ylitä valonnopeutta tyhjiös-sä, minkä mahdollisuuden erityinen suhteellisuusteoria kiistää. Kirjassa väitetään myös sopivalla nopeudella liikkuvan havaitsijan havaitsevan "ajan kulkevan taakse-päin" jossakin versumin osassa.Tämä edellyttäisi  kuitenkin,että kyseinen "havaitsija" liikkuisi valon nopeutta suurem- malla nopeudella.

Nuo totutusta poikkeavat tulkinnat johtuvat siitä, että kirjassa ei tunnusteta 'materi- aalisen olion' (objektin) käsitettä (kuten dialektisessa ja muussa emergentissä materialismissa), joka on juuri se entiteetti joka mm.ei voi liikkua valoa nopeammin, on se sitten hiukkanen tai informaatiosignaali. Erilaiset muut, puhtaasti matemaatti-sesti "viriteltävissä" olevat "mittauskohteet" niin voivat tehdä, koska ne eivät ole fysi-kaalisten oloiden kokonaisuuksia. Toisaalta Tsherenkovin säteilykin voidaan tulkita johtuvan siitä, ettei todellinen olio (myöskään elektroni) voi ylittää valon nopeutta. Kiihtyvässä liikkeessä oleva sähkövaraus ylipäätään aina säteilee fotoneja. (Fotonit jossakin väliaineessa silti voivat "jäädä jälkeen" siitä.)

Kirjassa väitetään myös, että on aivan sama ajatellaanko Maa tai Aurinko jököttä- mään paikallaan ja muu versumi kiertämään sitä, vai nämä liikkumaan homogeeni- sessa versumissa. Noin aivan puhtaasti matematiikan kannalta onkin, MUTTA EI FYSIIKAN kannalta, sillä tämä edellyttäisi äärettömiä (kierto)nopeuksia siellä "laidoil- la", eikä erityinen suhteellisuusteoria,jonka nimiin tämäkin kirja muutoin vannoo, voisi pitää paikkaansa. Kysymykseen monista ulottuvuuksista kirja suhtautuu tutun myön-teisesti,ja perusteleekin,miten kolme paikkaulottuvuutta ovat erikoisasemassa voiden taata paikallisesti stabiilin avaruuden.

Hawkingin lanseeraaman "malliriippuvaisen realismin" filosofian mallit eivät ole aivan samaa samaa kuin mm. dialektisen materialismin teoriat, joissa mm. käsit-teet ja jopa kulloinenkin muodollinen logiikkakin voidaan määritellä kussakin erik-seen. Malleilla on aina ymmärtääkseni ainakin perustavimmat käsitteet samat, mutta ne painottavat todellisuuden eri puolia ja ne yhdistetään "rajapinnoilla".

Niiden ero on lopultakin enemmän tiedollinen ja havainnollinen kuin olemuksellinen. Tällainen on todellakin mallintamista enemmän kuin teorianmuodostusta. Hawkingil- le "alkuräjähdys on seurausta luonnonlaeista", joista siis perustavimmat olisivat "eh-dottoman muuttumattomia" (myös alkupaukkujen yli), joten kirjassa on syytä epäillä suhtauduttavan rivien välistä yhtä kielteisesti aitoon emergenssiin eli luonnonlakien kehitykseen kuin Kari Enqvistin yksinkertaisessa energetismissäkin.

Noihin ehdottomiin luonnonlakeihin olisi myös "sisäänkirjoitettu" kaksipäisen muodol- lisen logiikan taustaoletukset:olisi olemassa sellainen (moniulotteisen) olemisen taso, jonka "pisteissä" mikä tahansa ominaisuus joko täysin olisi tai sellaista ei olisi lainkaan.

Ns. luonnonvakiot kuten valonnopeus tyhjiössä eivät kuitenkaan olisi perustavimpia luonnonlakeja, vaan ne olisivat "versumivakioita", jotka muuttuvat enemmän tai vä-hemmän joka "poksahduksessa", joiden tuloksena olevat versumit eri vakioineen ei-vät "kommunikoisi" keskenään ainakaan tavallisilla versumiensisäisillä fysiikan laeilla.

Mahdollisuuden ja todellisuuden dialektiikka teoksesta puuttuu kokonaan, josta seuraa, kun on kysymys todennäköisyyslaeista,että jokin tämän hetken todella toteu- tuva "ratkaisu" (tapaus) muka vaikuttaisi myös "ajassa taaksepäin" (versumissa) sii- hen, miten sen "rakennuspalikat" joskus menneisyydessä "todella ovat olleet", eli tä- mä puoli EI OLISI LUONTEELTAAN PELKÄSTÄÄN TIEDOLLISTA,että tuosta asi- asta vain saataisiin uusi tieto. Tämä käsitys on hienossa sopusoinnussa "Wheelerin madonreikien" ja "aikamatkailun" kanssa,mutta jyrkässä ristiriidassa objektiivisen emergenssin kanssa. Todellisuudessa mahdollisten eli  virtuaalisten hiukkasten ei tarvitse olla samanlaisia kuin aktuaalisten hiukkasten, vaikka ne muuttuvat sellai-siksi sopivien edellytysten vallitessa, ja vaikka niistä ehkä saadaankin fysikaalista tietoa vain niiden muuttumisten kautta aktuaalisiksi hiukkasiksi.

Ainoa mikä siinä ykskantaan kumotaan on "älykäs luominen":sellaista ei voi olla, eikä myöskään "tarvita".

En vaihda silti dialektisesta enkä muusta emergentistä materialismista tähän teori- aan: joutuessani valitsemaan kahdesta vaihtoehdosta, jossa toisessa perustavimmat luonnonlait ovat ehdottoman muuttumattomia, mutta MENNEISYYS voi vielä tä-näänkin "todella muuttua" kauaksikin ajassa taaksepäin ("malliriippuvaisessa realismissa"), ja toisessa taas menneisyys on täysin lukkoonlyöty (determinismin periaate) ja objektiivisesti "se, mikä se on", mutta LUONNONLAITKIN EVOLUOITU-VAT (emergentissä kuten dialektisessa materialismissa) valitsen ilman muuta ja epäröimättä jälkimmäisen!

Nyt mahdollisesti löytymässä oleva Higgsin bosoni tai sen kaltainen (yksi tai jopa useampi) entuudestaan tuntematon hiukkanen sopii olioteoriaan ja siten emergent- tiin materialismiin hyvin.Tähän Hawkingin ideaan gravitaation ja energian/oiden kes- kinäissuhteista se varmaan tuo lisävaloa, kun päästään tarkempiin ja halvempiin lisätutkimuksiin energia-alueella, joka nyt tiedetään tarkoin.

Higgsin bosonihan sellaisenaan nykyisellään ei selitä gravitaatiota eikä raskasta massaa, vaan pelkästään hitaan massan (ellei sitten ole suorastaan jollakin tavalla "positiivinen ja negatiivinen Higgsin bosoni", joista toinen selittäisi massaa ja toinen gravitaatiota... Sitten ne ainakin olisivat aina varmasti "tasapainossa", kuten Hawking olettaa niiden kokonaisuutena aina olevan...

Lenin oikaisi mestarillisesti v.1908 materialistisen filosofian pohjalta Ranskan Tiede- akatemian puheenjohtajaa Henri Poincaréta, joka oli itsenäisesti johtanut huomatta- van osan erityisen suhteellisuuteorian matematiikkaa Hendrick Lorentzin muunnok- sen ja Michelson-Morleyn valonnopeushavaintojen perusteella tämän teorianmuo-dostuksessa olevasta virheestä. Suotta jauhaa enqvistit filosofian olevan "turhanpäiväistä", kun eivät itse osaa sitä! Materialismi ja empiriokritisismi:

http://keskustelu.skepsis.fi/Message/FlatMessageIndex/372461

http://www.kirjavinkit.fi/arvostelut/suuri-suunnitelma/

http://lukupiiri1.blogspot.fi/2012/04/stephen-hawking-leonard-mlodinow-suuri.html

Causality Principle 

in physics, a general principle establishing the permissible limits of the influence of physical events on each other.

According to the principle, a given event cannot influence events that have already occurred, a notion reflected in such statements as the future does not influence the past and the cause event precedes the effect event in time.” The causality principle also requires the absence of any mutual influence between events for which the application of the concepts “earlier” and “later” has no meaning - an event, for example, that is earlier to one observer but appears later to another observer.According to the special theory of relativity,such a situation arises when the spatial distance between events is so great and the time interval between the events is so small that the events can be connected only by a signal propagating faster than light. Since the causal relationship can be realized only by a signal connecting the events, the requirement of the absence of a causal relationship leads to the famous result that motion (of a physical thing, HM) cannot occur at a speed exceeding the speed of light in a vacuum.

In physical theory,the causality principle is used primarily to choose boundary con- ditions for the corresponding dynamics equations so as to ensure the uniqueness of the solution of the equations.Thus,in the solution of Maxwell’s equations of electro- dynamics, the causality principle chooses between advanced and retarded potentials in favor of the latter. Similarly, in quantum field theory the causality principle imparts uniqueness to the results of the Feynman-diagram technique, which is an important instrument in the theoretical description of interacting fields or particles.

Moreover,the causality principle permits the general properties of quantities that describe the response of a physical system to external influences to be established.

An example is the analytic properties of the dielectric constant of a system as a function of frequency (the Kramers-Kronig dispersion relations). Another important example is the dispersion relations in the theory of scattering of strongly interacting particles,or hadrons. These relations are a unique instance of an exact dependence between directly observable quantities - the amplitude of forward elastic scattering and the total cross section - that is derived without the use of any model conceptions of elementary particles. The role of the causality principle in the theory of elementary particles has grown with the development of a special axiomatic approach whose goal is to describe the interactions of particles directly on the basis of the general principles (postulates) of the theory. In the axiomatic approach, whose accomplish- ments include the derivation of the dispersion relations, the causality principle is assigned the constructive role of one of the principal postulates - along with the requirements of relativity theory and quantum theory.

The causality principle is verified without question by experiment in the macroscopic domain and by general human experience. Its validity, however, on the subnuclear level studied by the physics of elementary particles is not obvious. This is because in the formulation of the causality principle an event is understood to be a “point” event, which occurs at a given point in space at a given time. The causality principle we have been discussing up to now is accordingly also called the principle of microsco-pic causality. It should be noted, however, that the constraints resulting from quan-tum theory and the theory of relativity make the physical realization of a point event impossible.Any event - that is,any act involving the interaction of particles - unavoi-dably has a finite extent in space and time. Therefore,on the microscopic level the causality principle loses its direct physical meaning and becomes a formal require-ment. We thus can speak of the possible violation of the causality principle “in the small”; its validity is, of course, preserved on the macroscopic level.

Such a weakened causality principle is called the principle of macroscopic causality. A quantitative formulation of it that adequately reflects the constraints indicated above has not yet been developed. The numerous attempts to generalize quantum field theory that are associated with nonlocal quantum field theory are based on this principle.

The causality principle with which modern physics deals is a specific physical state- ment that is substantially narrower than the general philosophical notion, which sees causality as the interdependence and determinacy of a sequence of events.The cau- sality problem acquired great importance in the formulation of quantum mechanics, when the question of whether or not determinism is contradicted by a probabilistic description of microphenomena was widely discussed. The under-standing of the ne-cessity of rejecting the straight determinism of classical mechanics in considering the statistical regularities of the microworld led to a negative answer to this question. The apparent contradiction with the general causality principle can be explained by the unsuitability of classical physics for the description of microobjects. The transition to an adequate description in the language of wave functions leads to a situation in which even in quantum mechanics the initial state of the system completely defines its entire subsequent evolution - for known interactions of the system.

The problem of the observance of the general causality principle - that is, causality in the philosophical sense - still retains its importance today in the analysis of possible forms of violation of the physical causality principle “in the small.” Such analysis has been fostered by the development of nonlocal field theory, by the investigation of the problem of motion at speeds higher than the speed of light, and by special experi- ments for the purpose of verifying the causality principle.The analysis must explain what forms of violation of the causality principle lead to an unfamiliar and what forms to an inadmissible (from the viewpoint of the general causality principle) situation.

For example,the replacement of the original causality principle by the opposite state- ment (“the past does not influence the future”) does not contradict the general cau-sality principle even though it leads to highly unfamiliar consequences. In this case, the chain of cause and effect relationships is not broken but appears in time-inverted form. A contradiction with the general causality principle arises if it is assumed that the causal relationship can be directed both forward and backward in time. In such a case, a closed cycle of cause and effect relationships would be possible that would lead to violation of the principle that an effect event does not influence the cause event that produced it. This principle is substantially broader and more adequate to the general causality principle than the original causality principle. If the effect were capable of influencing its own cause, this influence could be expressed in the vani-shing of the cause event, a situation that would obviously entail a break in the con-nection between cause and effect. For example,if a wave emitted by a radiator were capable, after reflection, of returning at an earlier time,it could explode the radiator even before the radiator began operating. The fundamental impossibility of traveling into the past in a time machine follows from the same considerations.

A number of complicated and profound problems that still await solution is associated with the causality principle in modern physics.

REFERENCE

“Sverkhsvetovye dvizheniia i spetsial’naia teoriia otnositel’nosti.” In Einshteinovskii sbornik 1973. (Translated from English.) Preface by D. A. Kirzhnits and V. N. Sazonov. Moscow, 1974.

D. A. KIRZHNITS

The Great Soviet Encyclopedia, 3rd Edition (1970-1979). © 2010 The Gale Group, Inc. All rights reserved.

Risto Koivula
25.07.2013 22:00:44
372461

Lenin oikaisi mestarillisisesti suhteellisuusteoriaa väärin tulkinnutta Henri Poicaréta

Ranskan akatemianpuheenjohtaja fyysikko Henri Poincaré oli henkilö, joka olisi ilmeisimmin keksinyt erityisen suhteellisuusteorian, ellei Einstein olisi niin tehnyt. Hän oli johtanut suuren osan teorian matematiikasta Lorentzin ja valon nopeuden vakioisuuden eri havaitsijoille kannalta. Hän oli vieläpä tehnyt tämän ilmeisimmin ilman Lobatshevskin geometriaa, jonka taan Eistein aivan ilmeisesti tunsi, mutta olisi siitä hiljaa, ja keroi muita juttuja teorian johtamisesta Maxwellin pohjalta.

Lenin osoitti filosofian perusteella pääteoksessaan "Materialimi ja empirio-kritisismi" just nappiinsa epämaterialistisen virheen hänen ajatuskulussaan. SEllaista ei voi tehdä millään haistapaskanfilosofialla. http://hameemmias.vuodatus.net/lue/2015/10/leninin-oppi-objektiivisesta-ja-konkreettisesta-tieteellisesta-totuudesta-1

 

" Myös Jules Henri Poincaré perusteli näkemyksen, että fysikaalisessa laboratorioko- keessa testataan aina paitsi fysiikkaa,välillisesti myös kokeessa sovellettua matema- tiikkaa ja logiikkaa, jotka voivat eri fyskikaalisilla kohteilla nekin olla erilaisia. Poicare tunnetaan siitä,että hän keksi osia erityisestä suhteellisuusteoriasta Lorentzin pohjal- ta Einsteinista riippumatta. Lenin arvostelee Poincarén näkemystä machismista ja mm. materian ja massan sekoittamisesta "Materialismin ja empiriokritisismin" osassa 5. "

" 1. The Crisis in Modern Physics

In his book Valeur de la science [Value of Science], the famous French physicist Henri Poincaré says that there are “symptoms of a serious crisis” in physics, and he devotes a special chapter to this crisis (Chap. VIII, cf. p. 171). The crisis is not con-fined to the fact that “radium, the great revolutionary,” is undermining the principle of the conservation of energy.“All the other principles are equally endangered” (p. 180). For instance, Lavoisier’s principle, or the principle of the conservation of mass, has been undermined by the electron theory of matter.According to this theory atoms are composed of very minute particles called electrons, which are charged with positive or negative electricity and “are immersed in a medium which we call the ether.” The experiments of physicists provide data for calculating the velocity of the electrons and their mass (or the relation of their mass to their electrical charge). The velocity proves to be comparable with the velocity of light (300000 kilometres per second), attaining, for instance, one-third of the latter. Under such circumstances the twofold mass of the electron has to be taken into account, corresponding to the necessity of over coming the inertia, firstly, of the electron itself and, secondly, of the ether. The former mass will be the real or mechanical mass of the electron, the latter the “elect-rodynamic mass which represents the iner-tia of the ether.” And it turns out that the former mass is equal to zero. The entire mass of the electrons, or,at least, of the ne- gative electrons, proves to be totally and exclusively electrodynamic in its origin. [8]

Mass disappears.

The foundations of mechanics are undermined. Newton’s principle, the equality of action and reaction, is undermined, and so on.

We are faced, says Poincaré, with the “ruins” of the old principles of physics, “a ge-neral debacle of principles.” It is true, he remarks, that all the mentioned departures from principles refer to infinitesimal magnitudes; it is possible that we are still ignorant of other infinitesimals counteracting the undermining of the old principles.

Moreover, radium is very rare. But at any rate we have reached a “period of doubt.” We have already seen what epistemological deductions the author draws from this “period of doubt":“it is not nature which imposes on [or dictates to] us the concepts of space and time,but we who impose them on nature";“whatever is not thought, is pure nothing.” These deductions are idealist deductions. The breakdown of the most fun-damental principles shows (such is Poincaré’s trend of thought) that these principles are not copies, photographs of nature,not images of something external in relation to man’s consciousness,but products of his consciousness. Poincaré does not develop these deductions consistently, nor is he essentially interested in the philosophical aspect of the question.It is dealt with in detail by the French writer on philosophical problems, Abel Rey, in his book The Physical Theory of the Modern Physicists (La Théorie physique chez les physiciens contemporains, Paris, F. Alcan, 1907). True, the author himself is a positivist, i.e., a muddlehead and a semi-Machian, but in this case this is even a certain advantage, for he can not be suspected of a desire to “slander” our Machians’ idol. Rey cannot be trusted when it comes to giving an exact philosophical definition of concepts and of materialism in particular, for Rey too is a professor,and as such is imbued with an utter contempt for the materialists (and dis-tinguishes himself by utter ignorance of the epistemology of materialism). It goes without saying that a Marx or an Engels is absolutely non- existent for such “men of science.” But Rey summarises carefully and in general conscientiously the extremely abundant literature on the subject, not only French, but English and German as well (Ostwald and Mach in particular),so that we shall have frequent recourse to his work.

The attention of philosophers in general, says the author, and also of those who, for one reason or another, wish to criticise science generally,has now been particularly attracted towards physics. “In discussing the limits and value of physical knowledge, it is in effect the legitimacy of positive science, the possibility of knowing the object, that is criticised” (pp.i-ii). From the “crisis in modern physics” people hasten to draw sceptical conclusions (p.14). Now, what is this crisis? During the first two-thirds of the nineteenth century the physicists agreed among themselves on everything essential. They believed in a purely mechanical explanation of nature: they assumed that phy-sics is nothing but a more complicated mechanics, namely, a molecular mechanics. They differed only as to the methods used in reducing physics to mechanics and as to the details of the mechanism....At present the spectacle presented by the physico-chemical sciences seems completely changed.

Extreme disagreement has replaced general unanimity, and no longer does it con- cern details,but leading and fundamental ideas. While it would be an exaggeration to say that each scientist has his own peculiar tendencies,it must nevertheless be noted that science,and especially physics,has,like art,its numerous schools,the conclusions of which often differ from, and sometimes are directly opposed and hostile to each other. . . .

“From this one may judge the significance and scope of what has been called the crisis in modern physics.

“Down to the middle of the nineteenth century,traditional physics had assumed that it was sufficient merely to extend physics in order to arrive at a metaphysics of matter. This physics ascribed to its theories an ontological value. And its theories were all mechanistic. The traditional mechanism [Rey employs this word in the specific sense of a system of ideas which reduces physics to mechanics] thus claimed, over and above the results of experience, a real knowledge of the material universe. This was not a hypothetical account of experience; it was a dogma. . .” (p. 16).

We must here interrupt the worthy “positivist.” It is clear that he is describing the ma-terialist philosophy of traditional physics but does not want to call the devil (materia-lism) by name. Materialism to a Humean must appear to be metaphysics, dogma, a transgression of the bounds of experience,and so forth. Knowing nothing of materia- lism, the Humean Rey has no conception whatever of dialectics,of the difference bet- ween dialectical materialism and metaphysical materialism,in Engels’ meaning of the term.Hence,the relation between absolute and relative truth,for example,is absolutely unclear to Rey.

“... The criticism of traditional mechanism made during the whole of the second half of the nineteenth century weakened the premise of the ontological reality of mecha- nism.On the basis of these criticisms a philosophical conception of physics was foun-ded which became almost traditional in philosophy at the end of the nineteenth cen-tury. Science was nothing but a symbolic formula, a method of notation (repérage, the creation of signs, marks, symbols), and since the methods of notation varied ac- cording to the schools, the conclusion was soon reached that only that was denoted which had been previously designed (faconné) by man for notation (or symbolisa-tion). Science became a work of art for dilettantes,a work of art for utilitarians: views which could with legitimacy be generally interpreted as the negation of the possibility of science. A science which is a pure artifice for acting upon nature, a mere utilitarian technique, has no right to call itself science, without perverting the meaning of words. To say that science can be nothing but such an artificial means of action is to disavow science in the proper meaning of the term.

“ The collapse of traditional mechanism, or, more precisely, the criticism to which it was subjected, led to the proposition that science itself had also collapsed. From the impossibility of adhering purely and simply to traditional mechanism it was inferred that science was impossible” (pp. 16-17).

And the author asks: “Is the present crisis in physics a temporary and external inci- dent in the evolution of science, or is science itself making an abrupt right-about-face and definitely abandoning the path it has hitherto pursued?. . .”

“If the [physical and chemical] sciences,which in history have been essentially eman- cipators, collapse in this crisis, which reduces them to the status of mere, technically useful recipes but deprives them of all significance from the stand point of know-ledge of nature, the result must needs be a complete revolution both in the art of logic and the history of ideas. Physics then loses all educational value; the spirit of positive science it represents becomes false and dangerous.” Science can offer only practical recipes but no real knowledge. “Knowledge of the real must be sought and given by other means. ... One must take another road, one must return to subjective intuition, to a mystical sense of reality, in a word, to the mysterious, all that of which one thought it had been deprived” (p. 19).

As a positivist, the author considers such a view wrong and the crisis in physics only temporary. We shall presently see how Rey purifies Mach, Poincaré and Co.of these conclusions. At present we shall confine ourselves to noting the fact of the “crisis” and its significance. From the last words of Rey quoted by us it is quite clear what re-actionary elements have taken advantage of and aggravated this crisis. Rey explicit-ly states in the preface to his work that “the fideist and anti-intellectualist movement of the last years of the nineteenth century” is seeking “to base itself on the general spirit of modern physics” (p.ii). In France,those who put faith above reason are called fideists (from the Latin fides, faith).

Anti-intellectualism is a doctrine that denies the rights or claims of reason. Hence, in its philosophical aspect, the essence of the “crisis in modern physics” is that the old physics regarded its theories as “real knowledge of the material world,” i.e., a reflec- tion of objective reality. The new trend in physics regards theories only as symbols, signs, and marks for practice, i.e., it denies the existence of an objective reality inde- pendent of our mind and reflected by it. If Rey had used correct philosophical termi- nology, he would have said: the materialist theory of knowledge, instinctively accep- ted by the earlier physics, has been replaced by an idealist and agnostic theory of knowledge, which, against the wishes of the idealists and agnostics, has been taken advantage of by fideism.

But Rey does not present this replacement, which constitutes the crisis, as though all the modern physicists stand opposed to all the old physicists. No. He shows that in their epistemological trends the modern physicists are divided into three schools: the energeticist or conceptualist school; the mechanistic or neo-mechanistic school, to which the vast majority of physicists still adhere; and in between the two, the critical school. To the first belong Mach and Duhem; to the third, Henri Poincaré to the se-cond, Kirchhoff, Helmholtz,Thomson (Lord Kelvin), Maxwell - among the older physi- cists - and Larmor and Lorentz among the modern physicists. What the essence of the two basic trends is (for the third is not independent, but intermediate) may be judged from the following words of Rey’s:

“Traditional mechanism constructed a system of the material world.” Its doctrine of the structure of matter was based on “elements qualitatively homogenous and iden-tical"; and elements were to be regarded as “immutable,impenetrable,” etc. Physics “constructed a real edifice out of real materials and real cement. The physicist pos-sessed material elements, the causes and modes of their action, and the real laws of their action” (pp. 33 - 38). The change in this view consists in the rejection of the on-tological significance of the theories and in an exaggerated emphasis on the pheno-menological significance of physics.” The conceptualist view operates with “pure ab-stractions ...and seeks a purely abstract theory which will as far as possible eliminate the hypothesis of matter. ... The notion of energy thus becomes the substructure of the new physics. This is why conceptualist physics may most often be called energeticist physics", although this designation does not fit, for example, such a representative of conceptualist physics as Mach (p. 46).

Rey’s identification of energetics with Machism is not altogether correct, of course; nor is his assurance that the neo-mechanistic school as well is approaching a pheno- menalist view of physics (p. 48), despite the profundity of its disagreement with the conceptualists. Rey’s “new” terminology does not clarify,but rather obscures matters; but we could not avoid it if we were to give the reader an idea of how a “positivist” regards the crisis in physics.

Essentially,the opposition of the “new” school to the old views fully coincides, as the reader may have convinced himself, with Kleinpeter’s criticism of Helmholtz quoted above.In his presentation of the views of the various physicists Rey reflects the inde- finiteness and vacillation of their philosophical views.The essence of the crisis in mo- dern physics consists in the breakdown of the old laws and basic principles,in the re- jection of an objective reality existing outside the mind, that is, in the replacement of materialism by idealism and agnosticism. “Matter has disappeared" - one may thus express the fundamental and characteristic difficulty in relation to many of the parti-cular questions, which has created this crisis. Let us pause to discuss this difficulty.

2. “Matter Has Disappeared?” "

 

Keskustelua:

Keskustelua AL:ssä:

Heikki Karjalainen kommentoi:

Tämä jotenkin liittyy asiaa:

1. Valon nopeus teoriassa voidaan ylittää, vaikka fysikaalinen vakiokaava sanoo, että ei:

Valonnopeus on fysikaalinen vakio, jota merkitään kirjaimella  c  (lat. celeritas [1], ’nopeus’). [2] Sen arvo on 299 792 458 m/s eli 1079252848,8 km/h. Erityisen suhteellisuusteorian mukaan yksikään kappale, jolla on massa, ei voi saavuttaa valonnopeutta. Valonnopeus on myös kaiken informaation, myös massattomien hiukkasten, nopeuden yläraja. [3])

2. …miten: pistemäinen pyörivä keskiö lähettää laser-säteen avaruuteen, jolloin saavutetaan valon nopeus kehällä helpostikin: Säde x kehänopeus = valon nopeus esim. 1000 krs/sek säteellä 100 km, antaa kehänopeudeksi (säde x pii 3.16 ) valon nopeuden yli 300 000 km/ sek.

3. Väite: jos lisätään kierrosnopeutta edellisen kaavan mukaisesti tai sädettä suuremmaksi, mitä tapahtuu valon säteelle etäpäässä. Taipuuko se siten, että se ei voi ylittää tuota 300 000 km/ sek arvoa ? Onko valolla massaa, jotta tuo valon kaava fysikaalinen vakio pitäisi paikkansa ?

4. Valo mustan aukon lävistettyä muuttuu negatiiviseksi samoin aika. Mustan aukon tämä puoli ja sen takana oleva toinen puoli neutraloivat ajan ja valon.

Risto Juhani Koivula kommentoi:

3.  Tuo ns. VALOPISTE siellä varjostimella EI OLE FYSIKAALINEN OLIO kuten esimerkiksi alkeishiukkanen on. Kuitenkin yksttäinen fotonikin voi ylittää ja alittaa satunnaisesti valonnopeuden, mutta FOTONEILLA VÄLITETTY SIGNAALI ei voi ylittää valonnopeutta tyhjiössä c.

Francis Bacon jo ainakaan oivalsi,että ”ollakseen olio pitää omata sekä sisältö että muoto”, Aristoteleella englanniksi ”matter and shape”, Baconilla uudissanat ”content and form (muotti)” (näitä anotaan Shakespearen keksimiksi jo ”ennen”.

Tuo valopiste koostuu KOKO AJAN VAIHTUVISSTA FYSIKAALISISTA OLIOISTA ja on siten PUHTAASTI MATEMAATTINEN (VALE)”OLIO”. Sehän voi liikkua vaikka kuinka vopeasti, ja sellaisia voidaan kontruioida monella muullakin tavalla. ”Varjostimelle osuva” uusi fotoni ei kanna mitään informaatiota siitä, mitä edelliset fotonit siinä ovat ”tehneet”. Jos kyseessä olisi TODELLINEN, oikea aineellinen varjostin, sellainen tieto tuli varjostinta pitkin jälkikäteen edelliseen fotoniin nähden.

Mustan aukon sisäisistä asioista on vain hypoteeseja (koko aukot itsekin ovat osin yhä sitä). Aika ei mene negatiiviseksi, siihen minä ainakaan en usko.

... Säteet painavat suoraan, mutta jos olisi kiertokeskiössä ”äärettömän nopealla signaalilla tarkastelija”, lähtevät säteet NÄYTTÄISIVÄT ”taipuvan”, mitä ei siis todellisuudessa tapahdu: Hän ”näkee äärettömän nopealla signaalillaan” eri paikan varjostimessa kuin äärellisen nopeuden omaava valonsäde.