Tämä puoskaritiede on lähtenyt liikkeelle jo aikanakin 12 vuotta aikai-semmin Britanniasta NATO-tieteen Euroopan-keskuksesta (hyvässä ja pahassa, olen itsekin käynyt luennoimassa ja julkistamassa tutkimustu-loksiani siellä, motkaissut olan takaa oman alan "eurotiedettä", ettei sen puoleen...), jo 8 vuotta ennen Giacomo Rizzolattin ilmeisiä väären-nöshavaintoja (2) samalla, alun perin Ragnar Granitin kehittämällä elektrodimenetelmällä, saman porukan ja lisäksi tamperelaisen Jari K. Hietasen toimesta, tästä tarkemmin lopussa. (1)
Imitation, mirror neurons and autism
Article · Literature Review (PDF Available) OAI DOI: 10.1016/S0149-7634(01)00014-8 · Source:
https://www.researchgate.net/publication/28763620_Imitation_mirror_neurons_and_autism

Thomas Suddendorf
(Häijyn näköistä porukkaa...)
Abstract
Various deficits in the cognitive functioning of people with autism have been docu-mented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking,such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and ‘theory of mind’ abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism.
(PDF) Imitation, mirror neurons and autism.
Available from:
https://www.researchgate.net/publication/28763620_Imitation_mirror_neurons_and_autism [accessed Aug 05 2018].
(PDF) Imitation, mirror neurons and autism. Available from:
https://www.researchgate.net/publication/28763620_Imitation_mirror_neurons_and_autism [accessed Aug 05 2018].
[HM: Tuo "Pierret(ys)" ON SIIS "TUTKINUT" 10 VUOTTA AIKAISEMMIN PILKUL-LEEN SAMAA ONGELMAA SAMOIN KEINOIN KUN "TIETEEN MULLISTAJA" GIACOMO RIZZOLATTI, SIIS JUURI "PEILINEURONEJA" (= "AJATUS KEENIN EXPRESSIONA, PÖLHÖ-KANDEL!) - MITÄPÄ MUUTAKAAN! SAAMATTA KUI-TENKAAN ODOTETTUA TULOSTA "REHELLISESTI"! Kun homma meni havain-noissakin huijaamiseksi (eikä vain niiden tulkinnoissa), hommaan valittiin "sopiva" henkilö melko kaukaa infosota"tieteen" "esikunnasta": syntyjään neuvostoliiton-italialainen, pavlovilaisen tutkimustaustan (sen "kumottavan"!) omaava Rizzolatti Parmasta Italiasta!
[Tosi vanha pieru: Tuo "Pierret" näyttää olevan primus motor; tuolloin ei kuitenkaan ole "tiedetty peilineuroneista"... vai "onko"? HM]
HM: Michael Arbib oli ensimmäinen joka loikkasi ulos tuosta sisäpiiristä vaatien Rizzolattin koepöytäkirjoja julkisiksi ja näin myös antaen ymmärtää, että "kokeet" oli-vat joko väärennettyjä.Ne eivät siis olleet ryhmän jäsenillekään julkisia! Tämä tapah- tui sen jälkeen, kun ilmeni, ettei Rizzolattin "kokeita" pystytä elektrodimenetelmällä toistamaan millään lajilla. Valitettavasti Arbib siirtyi sittemmin toisen HUUHAAn, "ajattelevien tietokoneiden" pariin,eikä oikeaan tieteeseen,kuten toinen "auktoriteetti" Michael Tomasello, joka omissa kokeissaan huomasi, että IHMISAPINOILLA EI OLEKAAN MITÄÄN "MIELENTEORIAA", oletuksia toisten aikomuksista! "Sellainen" on vain ihmisellä - ihminen niitä ajatuksia ja suunnitelmia sitten olettaa muiden elä-vien päihin, perusteettomasti. Kahden hölynpölläriryhmän, "aitojen ja keinotekoisten peilineuronien, todella ajattelevien tietokneiden", ero on metodologinen: ensimmäi-nen yrittää "löytää luoonosta" oletutensa mukaisen informaatisystemminen, jälkim-mäinen taas "rakentaa sellaisen" ensin keinotekoisesti - ja sitten väitää, että "se on se, millä myös luonto toimii".
Sari Avikainen nojaa tähän aivopieruun väitöskirjassaan 2005:
http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/avikainen/cortical.pdf
59
6.1.4 Functional role of the MNS
MNS function is based, according to the direct-matching hypothesis (Rizzolatti et al. 2001), on mapping of the visual representation of an action onto the observer’s own motor representation of the same action. This matching function has been suggested to be in involved in different behaviors, such as action understanding, imitation, attri-buting mental states,and even in some aspects of language. In action understanding, the motor knowledge of the observer is used for understanding and recognizing actions of others (Rizzolatti et al.2001).In line with this as-sumption,in a PET study by Grezes et al. (1998) the premotor areas were stronger activated during observation of meaningful arm actions, when the subjects had to undertand the purpose of the actions than when they just had to imitate the actions.
The term imitation can be used to describe many kind of functions in biology, sociolo- gy and psychology. When simple defined as copying by an observer of an action per-formed by a model,the underlying neural mechanism has been proposed to be based on the MNS (Iacoboni et al. 1999; Nishitani and Hari 2000; Rizzolatti et al. 2001; Ni-shitani and Hari 2002; Wohlschläger and Bekkering 2002). The function of the MNS may involve different imitative phenomena, such as ‘res-ponse facilitation’ (an auto-matic tendency to reproduce observed movements) in-cluding release phenomena in birds and yawning, laughing and neonatal imitation in humans (Meltzoff and Moore 1977), further to higher order imitation and imitative learning (Rizzolatti et al. 2001; Wohlschläger and Bekkering 2002).
The possible role of the MNS in other complex cognitive functions, such as language (Rizzolatti and Arbib 1998) and mind-reading (Gallese and Goldman 1998), has also been discussed. In line with the motor theory of speech perception (Liberman and Mattingly 1985; Liberman and Whalen 2000), suggesting that successful linguistic communication is not dependent on sound, but rather on a neural link between the sender and the receiver that allows production of phonetic gestures, Rizzolatti and Arbib (1998) proposed that the action execution/observation mat-ching system could have served as the neural prequisite for the development of interindividual communi-cation and finally speech. Interestingly,in a recent study by Petitto et al.(2001), babies with profoundly deaf parents were shown to convey a kind of silent linguistic babling with their hand movements.
60
Gallese and Goldman (1998) have proposed that the ability to detect and recognize mental states of others could have evolved from the MNS. According to one of the dominant mind-reading theories, the simulation theory (Davies and Stone 1995), other person’s mental states are detected by matching their states with resonant states of one’s own. Shared representations of different actions could serve as the basis of getting the observer into the same ‘mental shoes’ as the target (Gallese and Goldman 1998).
According to the simulation theory, all mental states requiring TOM, irrespective of whether they are are attributed to others or to oneself, should involve same neuronal system. However, in a fMRI study by Vogeley et al. (2001), modeling ones own men-tal-states activated at least in part dintinct brain regions than modeling the mental-states of others, opposed to the basic idea of simulation.
Although the relation of the MNS to different cognitive functions is still merely specu-lative, the discovery of the mirror neurons has offered a new tool to investigate brain function in our social enviroment. Future goals in this field include mapping of all brain areas involved in the mirror-neuron system and obtaining more information about their precise role in it. Futhermore,more information is needed about different stimulus types and modalities that are able to evoke mirror-neuron type activation, about the connection of the mirror-neuron system with different cognitive capacities, and about the possible role of a dysfunctional mirror-neuron system in different patient groups.
6.2 Autism
The autism spectrum disorders are a group of neurodevelopmental disorders that have a great variability in their clinical presentation but alltogether share some core symptoms, such as social impairment, deficits in communication, and restrictive pat-tern of behaviour. Autism has been a great challenge for neuroscience during the last decade.
Although a lot has been learned since the time when it was thought to be a psycho-genic syndrome caused by “refrigerator mothers”, the rapidly growing body of literature reports very heterogenous findings and theories about the basis of autism.
Abnormalities have been observed in many brain regions. However, not all subjects with autism show any abnormalities e.g. in structural or functional brain imaging, and none of the found abnormalities characterizes all subjects.In spite of the intensive re-search, we still don’t know whether autism is a single syndrome varying in severity or whether the autism spectrum of disorders have multiple etiologies that nonetheless lead into similar core symptoms.
61
Autism is a rather common syndrome affecting about 0.7% of the general population of children and adolescents (Gillberg and Wing 1999). Since it is a lifelong disorder with severe deficits in social interaction and communication and since many of the subjects have psychiatric and neurologic comorbidities,there is a great need for long-term institutional, medical, educational and psycho-social care. The costs for the indi-viduals, the families and the society are significant. Even subjects at the able end of the disorder often have problems in coping independently due to the social deficits that make their every-day life difficult. Sofar the treatment in autism merely includes rehabilitation and symptomatic medication, no curative treatment exists. Although these means can of course relieve comorbid symptoms and help the subjects and families to manage in every-day life, there is evidence (Gillberg and Billstedt 2000) that the core features of autism do not change much over time. On the other hand, most of the intensive rehabili-tation has only been performed during the last decade, and randomised follow-up studies of these interventios are merely lacking. Most ef-fective results have sofar been obtained from early and highly intensive intervention programmes (Howlin et al. 1995).
6.2.1 Autism and mirror neurons
None of the cognitive theories of autism (such TOM, weak central coherence and executive function deficit) has proven to be exclusive and none has been able to explain the whole range of symptoms found in autism. Most theories focus on social symptoms, since in spite of the wide clinical variation all subjects with autism spect-rum disorders suffer from social deficits. However, the neural basis of the deficit is largely unknown.
The discovery of mirror neurons has lead to hypothesis of their role in social cog-nition (Gallese and Goldman 1998; Rizzolatti et al.2001; Williams et al.2001). Espe-cially, when evidence of the human counterpart of the monkey mirror neurons was found, a question of the possible dysfunction of the MNS in conditions associated with social impairments, such as autism, was raised. Dysfunction of the MNS could lead in impairments in imitation, action understanding and further in difficulties in using and understanding body-language, mentalising, joint attention and even some aspects of language (Williams et al. 2001).
62
Total dysfunction, partial dysfunction, a dysfunction in certain parts of the MNS, or a developmental delay could all be in question.
In Studies II, V, and VI the hypothesis of possible connection between MNS and au-tism was tested. Study II showed rather normal activation of the primary motor cortex in a group of AS subjects both during observation and execution of manipulative hand actions, in spite of the deficit in their TOM abilities. The results exluded the pos-sibility of a total dysfunction of the MNS in Asperger subjects. Furthermore, no evi-dence was found of the connection between a TOM deficit and MNS dysfunction. However, the number of subjects was small (N = 5) and although no statistically sig-nificant differences were observed, a slight tendency was evident toward a weaker activation of the M1 in AS subjects.
In Study V, the AS and HFA subjects’ imitation abilities were examined by using a behavioural task. Recent evidence suggests that human imitation is based on the mirror-neuron system (Iacoboni et al. 1999; Nishitani and Hari 2000; Wohlschläger and Bekkering 2002). Normally people tend to imitate as in looking at a mirror (Bek-kering et al. 2000; Iacoboni et al. 2001) and observation of movements in a mirror-image view speeds up performance also in non-imitative tasks (Brass et al. 2000; Brass et al. 2001).
However, Study V showed that AS and HFA subjects are impaired in goal-directed imitation, when the imitation occurs in a mirror-image fashion. As certain aspects of imitation, such as imitation requiring self-other visual transformations, are most susceptible for MNS function (Williams et al. 2001), a developmental delay or adysfunction of the MNS could explain the observed results.
In Study VI, the hypothesis of a MNS dysfunction in autism was tested further by re-cording cortical activations while AS subjects imitated orofacial gestures. The results showed abnormal activation in the IF and M1 areas. As the the human mirror-neuron areas (the inferior parietal region, the Broca’s region and the M1) are activated in se-quence, dysfunction of both frontal and parietal part of the MNS could explain the de-layed and weaker activation of the IF and M1 areas. Broca’s region, the homologue of monkey F5 area, is activated during observation, exe-cution and imitation of hand and mouth movements (Iacoboni et al.1999; Nishitani and Hari 2000; Nishitani and Hari 2002) and considered as an essential part of the human MNS. Dysfunction of the IF part of the MNS could affect social abilities via connections to the orbitofrontal cortex and to the anterior ventral medial frontal region that are considered to contribute to theory of mind.
63
The STS region is closely connected to the MNS function and it has an important role in perception of many kind of socially relevant visual stimuli (for a review, see Allison et al. 2000; Puce and Perrett 2003). Interestigly, the STS region is also activated in tasks requiring mentalising (McGuire et al. 1996; Gallagher et al. 2000). In line with these results, autistic children, have been shown to be impaired in visual recognition of biological motion (Blake et al. 2003). In a PET study by Castelli et al. (2000), acti-vations of the STS and medial prefrontal cortex were weaker in autistic than in cont-rol subjects during a mentalising task, whereas the activity of the exstrastriate corti-ces did not differ from the controls. However,in Study VI activation of the occipital and STS areas did not differ between AS and control subjects. This discrepancy probably reflects different activation cascades within the STS region; perception of an mouth and hand actions in order to imitate might be intact in the STS level in AS subjects, whereas processing of more abstract and complex social stimuli (such as cartoons and stories of TOM) could be affected. Accordingly, perception of goal-directed hand actions was found to activate the caudal STS and the intraparietal sulcus, whereas perception of expressive whole-body motion activated the rostrocaudal STS, as well as the limbic structures, including the amygdala (Bonda et al. 1996).
Subjects in Studies II, V, and VI were adults and had AS (except one subject in Study II and two subjects in Study V who were autistic) representing the able end of the au-tism spectrum disorders. This subject group was chosen, since MEG re-cordings req-uire some co-operation from the subjects, especially when tasks in-volve active parti-cipation. Additionally, the subjects have to keep their heads stea-dy during the mea-surement to avoid movement artefacts and to enable identification of accurate source locations. Futhermore,in the AS group the amount of other factors that could affect the results, such as medication, comorbidities and language problems, is at minimum. Adult subjects were studied, because the knowledge of MEG responses in children and adolescents is still rather limited. However, in adults with the most “mildest” form of the disorder, the size of the effect could be smaller than in more severely affected subjects. On the other hand, although most AS and high-functioning autistic subjects, are of normal intelligence, they suffer from social difficulties, which according to the MNS hypothesis are just the symptoms that are linked with the MNS function.
Altogether, the results from Studies II and VI suggest that MNS dysfunction can account for a part of the imitation and social impairments in subjects with Asperger’s syndrome.
64
Since we only studied able adult subjects, it would be interesting in the future to exa-mine MNS function in more affected and younger subjects. Furthermore, modulatory influences from the prefrontal theory-of-mind regions on the MNS should be evaluated.
In autism research, lack of replication of studies, small and heterogenous experimen- tal groups and poor control of other confounding variables have for long been a prob-lem, therefore future studies should attempt to investigate more homogeneous sub-groups within the autism spectrum disorders. Effective communication between reseachers on this field will help to integrate and update the diagnostic criteria for the different subgroups. The studies should also aim at integrating in-formation from dif-ferent fields of the research, such as genetics,functional imaging and neuropsycholo- gy. Hopefully, in the near future we are able to understand much better the biological mechanisms underlying the mystery of autism.
...
70
9. REFERENCES
Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., Happe, F., Frith, C., and Frith, U. 1999. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport, 10:1647-1651.
Adolphs, R. 1999. Social cognition and the human brain. Trends Cogn Sci, 3:4699. REFERENCES-479.
Adolphs, R. 2003. Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 4:165-178.
Adolphs, R., Tranel, D., Damasio, H., and Damasio, A.R. 1995. Fear and the human amygdala. J. Neurosci 15:5879-5891.
Adolphs, R., Tranel, D., and Damasio, A.R. 1998. The human amygdala in social judgment. Nature 393: 470-474.
Adolphs, R., Sears, L., and Piven, J. 2001. Abnormal processing of social information from faces in autism. J Cogn Neurosci 13:232-240.
Adrian, E.D. 1944. Brain rhythms. Nature 153:360-362.
Ahonen, A.I., Hämäläinen, M.S., Kajola, M.J., Knuutila, J.E.T., Laine, P.P., Lounas-maa, O.V., Parkkonen, L.T., Simola,J.T. and Tesche, C.D. 1993. 122-channel SQUID instrument for investigating the magnetic signals from the human brain. Physica Scripta T49:198-205.
Allison, T., McCarthy, G., Wood, C.C., Darcey, T.M., Spencer, D.D., and Williamson, P.D. 1989. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 62:694-710.
Allison, T., McCarthy, G., Wood, C.C., and Jones, S.J. 1991. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465-2503.
Allison, T., McCarthy, G., Nobre, A., Puce,A., and Belger,A. 1994. Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cereb Cortex 4: 544-554.
Allison, T., Puce, A., Spencer, D.D., and McCarthy, G. 1999. Electrophysiological stu-dies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex 9:415-430.
Allison, T., Puce, A., and McCarthy, G. 2000. Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267-278.
Amaral, D.G., and Insausti,R. 1992. Retrograde transport of D-[3H]-aspartate injected into the monkey amygdaloid complex. Exp Brain Res 88:375-388.
Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y. 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23: 185 - 188.
Anderson, A.K., and Phelps, E.A. 2001. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305-309.
Asperger, H. 1944. Die autistischen Psychopathen im Kindealter. Archiv fur Psychiatrie und Nervenkrankheiten 117:76-136.
71
Aylward, E.H., Minshew, N.J., Goldstein, G., Honeycutt, N.A., Augustine, A.M., Yates, K.O.,Barta,P.E.,and Pearlson,G.D.1999.MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53:2145- 2150.
Bailey, A., Luthert, P., Bolton, P., Le Couteur, A., Rutter, M., and Harding, B. 1993. Autism and megalencephaly. Lancet 341:1225-1226.
Bailey, A., Le Couteur, A., Gottesman,I., Bolton,P., Simonoff,E., Yuzda,E., and Rutter, M. 1995. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63-77.
Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., and Lantos, P. 1998. A clinicopathological study of autism. Brain 121:889-905.
Barbas, H. 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313-342.
Baron-Cohen, S. 1988. Social and pragmatic deficits in autism:cognitive or affective? J Autism Dev Disord 18:379-402.
Baron-Cohen, S. 1989. The autistic child's theory of mind: a case of specific developmental delay. J Child Psychol Psychiatry 30:285-297.
Baron-Cohen, S., Leslie, A.M., and Frith, U. 1985. Does the autistic child have a "theory of mind"? Cognition 21:37-46.
Baron-Cohen, S., Ring, H., Moriarty, J., Schmitz, B., Costa, D., and Ell, P. 1994. Recognition of mental state terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. Br J Psychiatry 165:640-649.
Baron-Cohen, S., Jolliffe, T., Mortimore, C., and Robertson, M. 1997a. Another ad-vanced test of theory of mind: evidence from very high functioning adults with autism or asperger syndrome. J Child Psychol Psychiatry 38:813-822.
Baron-Cohen, S., Wheelwright, S., and Jolliffe, T. 1997b. Is there a 'language' of the eyes? Evidence from normal adults, and adults with autism or Asperger's syndrome. Visual Cogn 4:311-331.
Baron-Cohen, S., Ring, H.A., Wheelwright, S., Bullmore, E.T., Brammer, M.J., Sim-mons,A., and Williams,S.C. 1999. Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11: 1891 - 1898.
Bauman, M., and Kemper, T.L. 1985. Histoanatomic observations of the brain in early infantile autism. Neurology 35:866-874.
Baumgartner, C., Sutherling, W.W., Di, S., and Barth, D.S. 1991. Spatiotemporal modeling of cerebral evoked magnetic fields to median nerve stimulation. Electroencephalogr Clin Neurophysiol 79:27-35.
Bekkering, H., Wohlschlager, A., and Gattis, M. 2000. Imitation of gestures in children is goal-directed. Q J Exp Psychol A 53:153-164.
Berger, H. 1929. Uber das Elektroenkephalogramm des Menchen. Arch Psychiatr Nervenkr 87:527-570.
Berlucchi, G., and Aglioti, S. 1997. The body in the brain: neural bases of corporeal awareness. Trends Neurosci 20:560-564.
Blake, R., Turner, L.M., Smoski, M.J., Pozdol, S.L., and Stone, W.L. 2003. Visual re-cognition of biological motion is impaired in children with autism. Psychol Sci 14:151 - 157.
Bonda, E., Petrides, M., Ostry, D., and Evans,A. 1996. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci 16:3737-3744.
Bowler, D.M. 1992. "Theory of mind" in Asperger's syndrome. J Child Psychol Psychiatry 33:877-893.
72
Brass, M., Bekkering, H., Wohlschlager, A., and Prinz, W. 2000. Compatibility bet-ween observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn 44:124-143.
Brass,M., Bekkering,H., and Prinz,W. 2001. Movement observation affects movement execution in a simple response task. Acta Psychol (Amst) 106:3-22.
Breiter, H.C., Etcoff, N.L., Whalen, P.J., Kennedy, W.A., Rauch, S.L., Buckner, R. L., Strauss, M.M., Hyman, S.E., and Rosen, B.R. 1996. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17:875-887.
Brothers, L., Ring, B., and Kling, A. 1990. Response of neurons in the macaque amygdala to complex social stimuli. Behav Brain Res 41:199-213.
Brunet, E., Sarfati, Y., Hardy-Bayle, M.C., and Decety, J. 2000. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157-166.
Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R.J., Zilles, K., Rizzolatti, G., and Freund,H.J. 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400 - 404.
Burgoine, E., and Wing, L. 1983. Identical triplets with Asperger's syndrome. Br J Psychiatry 143:261-265.
Burton, H. 1986. Second somatosensory cortex and related areas. In Cerebral Cortex (E.G. Jones, A. Peters, Eds.), pp. 31-98. Plenum.
Burton, H., and Robinson, C.J. 1987. Responses in the first and second somatosen-sory cortical area in cats during transient inactivation of the other ipsilateral area with lidocain hydrochloride. Somatosens Res 4:215-236.
Burton, H., Sathian, K., and Shao, D.H. 1990. Altered responses to cutaneous stimuli in the second somatosensory cortex following lesions of the postcentral gyrus in infant and juvenile macaques. J Comp Neurol 291:395-414.
Burton, H., Sinclair, R.J., Hong, S.Y., Pruett, J.R., Jr., and Whang, K.C. 1997. Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosens Mot Res 14:237-267.
Cahill, L., Haier, R.J., Fallon, J., Alkire, M.T., Tang, C., Keator, D., Wu, J., and McGaugh, J.L. 1996. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci USA 93:8016-8021.
Calder, A.J., Lawrence, A.D., Keane, J., Scott, S.K., Owen, A.M., Christoffels, I., and Young, A.W. 2002. Reading the mind from eye gaze. Neuropsychologia 40:1129-1138.
Carlsson, K., Petrovic, P., Skare, S., Petersson, K.M., and Ingvar, M. 2000. Tickling expectations: neural processing in anticipation of a sensory stimulus. J Cogn Neurosci 12:691-703.
Carper, R.A., Moses, P., Tigue, Z.D., and Courchesne, E. 2002. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16:1038-1051.
Caselli, R.J. 1993. Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43:762-771.
Castelli, F., Happe, F., Frith, U., and Frith, C. 2000. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 12:314-325.
Cavada, C., and Goldman-Rakic, P.S. 1989. Posterior parietal cortex in rhesus mon-key: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422-445.
73
Chapman, R.M., Ilmoniemi, R., Barbanera, S., and Romani, G.L. 1984. Selective localization of the alpha brain activity with neuromagnetic measurements. Electroencephalogr Clin Neurophysiol 58:569-572.
Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird,G., and Drew,A. 1997. Infants with autism: an investigation of empathy, pretend play, joint attention, and imitation. Dev Psychol 33:781-789.
Chatrian, G.E., Petersen, M.C., and Lazarte, J.A. 1959. The blocking of the rolandic wicket rhtyhm and some central changes related to movement. Electroencephalogr Clin Neurophysiol 11:497–510.
Cheron, G., and Borenstein, S. 1987. Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr Clin Neurophysiol 67: 537-548.
Cohen, L.G., and Starr,A.1987.Localization,timing and specificity of gating of somato- sensory evoked potentials during active movement in man.Brain 110 (Pt 2):451- 467.
Conway, B.A., Halliday, D.M., Farmer, S.F., Shahani, U., Maas, P., Weir, A.I., and Ro-senberg, J.R. 1995. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489: 917 - 924.
Cook, E.H., Jr. 2001. Genetics of autism. Child Adolesc Psychiatr Clin N Am 10: 333 - 350.
Corkum, V., and Moore, C. 1998. The origins of joint visual attention in infants. Dev Psychol 34:28-38.
Courchesne, E., Yeung-Courchesne, R., Press, G.A., Hesselink, J.R., and Jernigan, T.L. 1988. Hypoplasia of cerebellar vermal lobules VI and VII in autism.N Engl J Med 318: 1349-1354.
Curcio, F., and Piserchia,E.A. 1978. Pantomimic representation in psychotic children. J Autism Child Schizophr 8:181-189.
Damasio, A.R. 1996. The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1413-1420.
Damasio, A.R., and Maurer, R.G. 1978. A neurological model for childhood autism. Arch Neurol 35:777- 786.
Davidovitch, M., Patterson, B., and Gartside, P. 1996. Head circumference measurements in children with autism. J Child Neurol 11:389-393.
Davies, M., and Stone, T. 1995. Mental Simulation Blackwell.
DeMeyer, M.K., Alpern, G.D., Barton, S., DeMyer, W.E., Churchill, D.W., Hingtgen, J. N., Bryson, C.Q., Pontius, W., and Kimberlin, C. 1972. Imitation in autistic, early schi-zophrenic, and non-psychotic subnormal children. J Autism Child Schizophr 2: 264 - 287.
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. 1992. Un-derstanding motomevents: a neurophysiological study. Exp Brain Res 91:176-180.
Egaas, B., Courchesne, E., and Saitoh, O. 1995. Reduced size of corpus callosum in autism. Arch Neurol 52:794-801.
Ehlers, S., and Gillberg, C. 1993. The epidemiology of Asperger syndrome. A total population study. J Child Psychol Psychiatry 34:1327-1350.
Ehlers, S., Nyden, A., Gillberg, C., Sandberg, A.D., Dahlgren, S.O., Hjelmquist, E., and Oden, A. 1997. Asperger syndrome, autism and attention disorders: a comparative study of the cognitive profiles of 120 children. J Child Psychol Psychiatry 38:207-217.
74 Ellis, H.D., and Gunter, H.L. 1999. Asperger syndrome: a simple matter of white matter? Trends Cogn Sci 3:192-200.
Escalona, A., Field, T., Nadel, J., and Lundy, B. 2002. Brief report: imitation effects on children with autism. J Autism Dev Disord 32:141-144.
Fabri, M., Polonara, G., Quattrini, A., Salvolini, U., Del Pesce, M., and Manzoni, T. 1999. Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 11:3983-3994.
Fadiga, L., Fogassi, L., Pavesi, G., and Rizzolatti, G. 1995. Motor facilitation during action observation: A magnetic stimulation study. J Neurophysiol 73:2608-2611.
Ferrari, P., F., Gallese, V., Rizzolatti, G., and Fogassi, L. 2003. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex.Eur J Neurosci 17: 1703-1714.
Field, T., Sanders, C., and Nadel, J. 2001. Children with autism display more social behaviors after repeated imitation sessions. Autism 5:317-323.
Fine, C., Lumsden, J., and Blair, R.J. 2001. Dissociation between 'theory of mind' and executive functions in a patient with early left amygdala damage. Brain 124:287-298.
Fletcher, P.C., Happe, F., Frith, U., Baker, S.C., Dolan, R.J., Frackowiak, R.S., and Frith, C.D. 1995. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57:109-128.
Flor, H., Mühlnickel, W., Karl, A., Denke, C., Grüsser, S., and Taub, E. 1998. A neural substrate for nonpainful phantom limb phenomena. Society for Neuroscience Abstracts 24:249.16.
Fogassi, L., Gallese, V., Fadiga, L., and Rizzolatti, G. 1998. Neurons responding to the sight of goal directed hand/arm actions in the parital area PF (7b) of the macaque monkey. Soc Neurosci abstr 24:257.5.
Forss, N., and Jousmäki, V. 1998. Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res 781:259-267.
Forss, N., Hari, R., Salmelin, R., Ahonen, A., Hämäläinen, M., Kajola, M., Knuutila, J., and Simola, J. 1994a. Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309-315.
Forss, N., Salmelin, R., and Hari, R. 1994b. Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalogr Clin Neurophysiol 92:510-517.
Forss, N., Merlet, I., Vanni, S., Hämäläinen, M., Mauguiere, F., and Hari, R. 1996. Activation of human mesial cortex during somatosensory target detection task. Brain Res 734:229-235.
Forss, N., Hietanen, M., Salonen, O., and Hari, R. 1999. Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 122:1889-1899.
Friesen, C.K., and Kingstone, A. 1998. The eyes have it!:reflexive orienting is triggered by nonpredictive gaze. Psychonomic Bull Rev 5:
Frith, U., and Happe, F. 1994. Autism: beyond "theory of mind". Cognition 50:115-132.
Frith, U., Morton, J., and Leslie, A.M. 1991. The cognitive basis of a biological disorder: autism. Trends Neurosci 14:433-438.
Frot, M., and Mauguiere, F. 1999. Timing and spatial distribution of somatosensory responses recorded in the upper bank of the sylvian fissure (SII area) in humans. Cereb Cortex 9:854-863.
75
Galea, M.P., and Darian-Smith, I. 1994. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166-194.
Gallagher, H.L., Happe, F., Brunswick, N., Fletcher, P.C., Frith, U., and Frith, C.D. 2000. Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. Neuropsychologia 38:11-21.
Gallese, V., and Goldman, A. 1998. Miror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2:493-501.
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. 1996. Action recognition in the premotor cortex. Brain 119:593-609.
Gallese, V., Fogassi, L., Fadiga, L., and Rizzolatti, G. 2002. Action representation and the inferior parietal lobule. In Attention and Performance (W. Prinz, B. Hommel, Eds.), pp. 334-355. Oxford University Press, Oxford.
Garcia-Larrea, L., Bastuji, H., and Mauguiere, F. 1991. Mapping study of somatosen-sory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80:201-214.
Gastaut, H. 1952. Etude electrocorticographique de la reactivite des rytmes rolandiques. Revue de Neurologie (Paris) 87:176-182.
Gattis, M., Bekkering, H., and Wohlschläger, A. 2002. Goal-directed imitation. In The Imitative Mind (A. Meltzoff, W. Prinz, Eds.), pp. 183-205. Cambridge University Press, Cambridge.
Geday, J., Gjedde, A., Boldsen, A.S., and Kupers, R. 2003. Emotional valence modu-lates activity in the posterior fusiform gyrus and inferior medial prefrontal cortex in social perception. Neuroimage 18:675-684.
Ghez, C. 1991. Voluntary movement. In Principles of Neural Science (E. Kandel, J.H. Schwartz, T.M. Jessell, Eds.), pp. 609-625. Prentice-Hall International Inc.
Gillberg, C. 1991. Outcome in autism and autistic-like conditions. J Am Acad Child Adolesc Psychiatry 30:375-382.
Gillberg, C. 1995. The prevalence of autism and autism spectrum disorders. In The Epidemiology of Child and Adolescent Psychopathology (F.C. Verhulst, H.M. Koot, Eds.), pp. 227-257. Oxford University Press, Oxford.
Gillberg, C. 1998. Asperger syndrome and high-functioning autism. Br J Psychiatry 172: 200-9.
Gillberg, C., and Wing,L. 1999. Autism: not an extremely rare disorder. Acta Psychiatr Scand 99:399- 406.
Gillberg, C., and Billstedt, E. 2000. Autism and Asperger syndrome: coexistence with other clinical disorders. Acta Psychiatr Scand 102:321-330.
Gillberg, I.C., and Gillberg, C. 1989. Asperger syndrome-some epidemiological considerations: a research note. J Child Psychol Psychiatry 30:631-638.
Goel, V., Grafman, J., Sadato, N., and Hallett, M. 1995. Modeling other minds. Neuroreport 6:1741- 1746.
Grafton, S.T., Arbib, M.A., Fadiga, L., and Rizzolatti, G. 1996. Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:103-111.
Grezes,J., Costes,N., and Decety,J. 1999. The effects of learning and intention on the neural network involved in the perception of meaningless actions. Brain 122 (Pt 10): 1875 - 1887.
76
Grezes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., and Decety, J. 2001. Does perception of biological motion rely on specific brain regions? Neuroimage 13:775-785.
Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., and Blake, R. 2000. Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711-720.
Guyton, A., and Hall, J. 1996. Textbook of Medical Physiology. WB Saunders Company.
Haight, J.R. 1972. The general organization of somatotopic projections to SII cerebral neocortex in the cat. Brain Res 44:483-502.
Halgren, E., Baudena, P., Heit, G., Clarke, J.M., Marinkovic, K., and Clarke, M. 1994. Spatio-temporal stages in face and word processing. I. Depth-recorded potentials in the human occipital, temporal and parietal lobes. J Physiol Paris 88:1-50.
Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., and Hari, R. 2000. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex 10:69-81.
Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., and Lounasmaa, O.V. 1993. Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65:413-497.
Hammes, J.G., and Langdell, T. 1981. Precursors of symbol formation and childhood autism. J Autism Dev Disord 11:331-346.
Happe, F. G. 1994a. An advanced test of theory of mind: understanding of story characters' thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord 24: 129 -154.
Happe, F.G. 1994b.Wechsler IQ profile and theory of mind in autism: a research note. J Child Psychol Psychiatry 35:1461-1471.
Happe, F.G. 1995. The role of age and verbal ability in the theory of mind task performance of subjects with autism. Child Dev 66:843-855.
Happe, F., and Frith,U. 1996. The neuropsychology of autism. Brain 119 (Pt 4): 1377 - 1400.
Happe, F., Ehlers, S., Fletcher, P., Frith, U., Johansson, M., Gillberg, C., Dolan, R., Frackowiak, R.,and Frith,C. 1996. 'Theory of mind' in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 8:197-201.
Hari, R. 1990. The neuromagnetic method in the study of the human auditory cortex. In Auditory Evoked Magnetic Fields and Electric Potentials (F. Grandori, M. Hoke, G.L. Romani, Eds.), pp. 222-282. Karger, Basel.
Hari, R. 1991. On brain's magnetic responses to sensory stimuli. J Clin Neurophysiol 8: 157-169.
Hari, R., and Salmelin, R. 1997. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44-49.
Hari, R., Hämäläinen, M., Kaukoranta, E., Reinikainen, K., and Teszner, D. 1983. Neuromagnetic responses from the second somatosensory cortex in man. Acta Neurol Scand 68:207-212.
Hari, R., Reinikainen, K., Kaukoranta, E., Hämäläinen, M., Ilmoniemi, R., Pentti-nen, A., Salminen,J., and Teszner,D.1984. Somatosensory evoked cerebral magne- tic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57: 254-263.
Hari, R., Karhu, J., Hämäläinen, M., Knuutila, J., Salonen, O., Sams, M., and Vilk-man, V. 1993. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724-734.
77
Hari, R., Hänninen, R., Mäkinen, T., Jousmäki, V., Forss, N., Seppä, M., and Sa-lonen, O. 1998. Three hands: fragmentation of bodily awareness. Neurosci Lett 240: 131-134.
Hari, R., and Forss,N. 1999. Magnetoencephalography in the study of human soma- tosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354:1145 - 1154.
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., and Kuroda, Y. 1995. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 25:1-18.
Hasselmo, M.E., Rolls, E.T., Baylis, G.C., and Nalwa, V. 1989. Object-centered enco-ding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp Brain Res 75:417-429.
Haxby, J.V., Hoffman, E.A., and Gobbini, M.I. 2000. The distributed human neural system for face perception. Trends Cogn Sci 4:223-233.
Haznedar, M.M., Buchsbaum, M.S., Metzger, M., Solimando, A., Spiegel-Cohen, J., and Hollander, E. 1997. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry 154:1047-1050.
Heimann, M., Ullstadius, E., Dahlgren, S.O., and Gillberg,C. 1992. Imitation in autism: A preliminary research note. Behav Neurol 5:219-227.
Hellgren, L., Gillberg, I.C., Bagenholm,A., and Gillberg,C. 1994. Children with deficits in attention, motor control and perception (DAMP) almost grown up: psychiatric and personality disorders at age 16years. J Child Psychol Psychiatry 35:1255-1271.
Hobson, R.P. 1986a. The autistic child's appraisal of expressions of emotion. J Child Psychol Psychiatry 27:321-342. Hobson, R.P. 1986b. The autistic child's appraisal of expressions of emotion: a further study. J Child Psychol Psychiatry 27:671-680.
Hobson, R.P., and Lee,A. 1999. Imitation and identification in autism. J Child Psychol Psychiatry 40: 649 - 659.
Hoffman, E.A., and Haxby,J.V.2000. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3: 80-84.
Howlin, P., Wing, L., and Gould, J. 1995. The recognition of autism in children with Down syndrome-implications for intervention and some speculations about pathology. Dev Med Child Neurol 37:406-414.
Hsiao, S.S., O'Shaughnessy, D.M., and Johnson, K.O. 1993. Effects of selective at-tention on spatial form processing in monkey primary and secondary somatosensory cortex. J Neurophysiol 70:444-447.
Huttunen, J., and Homberg, V.1991. Modification of cortical somatosensory evoked potentials during tactile exploration and simple active and passive movements. Electroencephalogr Clin Neurophysiol 81:216-223.
Huttunen, J., Wikström, H., Korvenoja, A., Seppäläinen, A.-M., Aronen, H., and Ilmoniemi, R. 1996.Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. NeuroReport 7:1009-1012.
Iacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., and Rizzolatti, G. 1999. Cortical mechanisms of human imitation. Science 286:2526-2528.
Iacoboni, M., Koski, L.M., Brass, M., Bekkering, H., Woods, R.P., Dubeau, M.C., Mazziotta, J.C., and Rizzolatti, G. 2001. Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci U S A 98:13995-13999.
78
Itakura, S. 1996. Manual action in infant chimpanzees: a preliminary study. Percept Mot Skills 83:611- 614.
Jamain, S., Quach, H., Betancur, C., Rastam, M., Colineaux, C., Gillberg, I.C., Soder-strom, H., Giros, B., Leboyer, M., Gillberg, C., and Bourgeron, T. 2003. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27-29.
Järvelainen, J., Schürmann, M., Avikainen, S., and Hari, R. 2001. Stronger reacti-vity of the human primary motor cortex during observation of live rather than video motor acts. Neuroreport 12:3493-3495.
Järveläinen, J., Schürmann, M., and Hari, R. 2003. Activation of the human primary motor cortex during observation of tool use. Neuroimage (under revision).
Jeannerod, M. 1994. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187-245.
Jeannerod, M., Arbib, M.A., Rizzolatti, G., and Sakata, H. 1995. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314-320.
Johansson, M., Wentz, E., Fernell, E., Stromland, K., Miller, M.T., and Gillberg, C. 2001. Autistic spectrum disorders in Mobius sequence: a comprehensive study of 25 individuals. Dev Med Child Neurol 43:338-345.
Jones, E.G., and Powell, T.P. 1969. Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions. Brain 92:477-502.
Jure, R., Rapin, I., and Tuchman, R.F. 1991. Hearing-impaired autistic children. Dev Med Child Neurol 33:1062-1072.
Kadesjö, B., Gillberg, C., and Hagberg, B. 1999. Brief report: autism and Asperger syndrome in seven- year-old children: a total population study. J Autism Dev Disord 29:327-331.
Kakigi, R., and Jones, S.J. 1985. Effects on median nerve SEPs of tactile stimulation applied to adjacent and remote areas of the body surface. Electroencephalogr Clin Neurophysiol 62:252-265.
Kakigi, R., Koyama, S., Hoshiyama, M., Watanabe, S., Shimojo, M., and Kitamura, Y. 1995. Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci 128:195-204.
Kandel, E., and Jessell, T.M. 1991. Touch. In Principles of Neural Science (E. Kan-del, J.H. Schwartz, T.M. Jessell, Eds.), pp. 367-384. Prentice-Hall International Inc.
Kanner, L. 1943. Autistic disturbances of affective contact. Nervous Child 2:217-250.
Kaukoranta, E., Hari, R., Hämäläinen, M., and Huttunen, J. 1986. Cerebral magnetic fields evoked by peroneal nerve stimulation. Somatosens Res 3:309-321.
Kawashima, R., Sugiura, M., Kato, T., Nakamura, A., Hatano, K., Ito, K., Fukuda, H., Kojima, S., and Nakamura, K. 1999. The human amygdala plays an important role in gaze monitoring. A PET study. Brain 122 ( Pt 4):779-783.
Kemper, T.L., and Bauman, M. 1998. Neuropathology of infantile autism. J Neuropathol Exp Neurol 57: 645 -652.
Kiehl, K.A., Smith, A.M., Hare, R.D., Mendrek, A., Forster, B.B., Brink, J., and Liddle, P.F. 2001. Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol Psychiatry 50:677-684.
Klin, A., Sparrow, S.S., and Volkmar, F.R. 2000. Asperger Syndrome, Guilford, New York.
79
Klin, A., Volkmar, F.R., and Sparrow, S.S. 1992. Autistic social dysfunction: some limitations of the theory of mind hypothesis. J Child Psychol Psychiatry 33:861-876.
Klin, A., Volkmar, F.R., Sparrow, S.S., Cicchetti, D.V., and Rourke,B.P. 1995. Validity and neuropsychological characterization of Asperger syndrome: convergence with nonverbal learning disabilities syndrome. J Child Psychol Psychiatry 36:1127-1140.
Kohler, E., Keysers, C., Umilta, M.A., Fogassi, L., Gallese, V., and Rizzolatti, G. 2002. Hearing sounds,understanding actions:action representation in mirror neurons. Science 297:846-848.
Kracke, I. 1994. Developmental prosopagnosia in Asperger syndrome: presentation and discussion of an individual case. Dev Med Child Neurol 36:873-886.
Kuhlman, W.N. 1978. Functional topography of the human mu rhythm. Electroencephalogr Clin Neurophysiol 44:83-93.
Kurata, K., and Tanji, J. 1986. Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements. J Neurosci 6:403-411.
Lainhart, J.E., Piven, J., Wzorek, M., Landa, R., Santangelo, S.L., Coon, H., and Fol-stein, S.E. 1997. Macrocephaly in children and adults with autism. J Am Acad Child Adolesc Psychiatry 36:282-290.
Lam, K., Kakigi, R., Kaneoke, Y., Naka, D., Maeda, K., and Suzuki, H. 1999. Effects of visual and auditory stimulation on somatosensory evoked magnetic fields. Clin Neurophysiol 110:295-304.
Lamme, V.A., and Roelfsema, P.R. 2000. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571-579.
Langton, S.R., and Bruce, V. 2000. You must see the point: automatic processing of cues to the direction of social attention. J Exp Psychol Hum Percept Perform 26:747 - 757.
Langton, S.R., Watt, R.J., and Bruce, I.I. 2000. Do the eyes have it? Cues to the direction of social attention. Trends Cogn Sci 4:50-59.
Leslie, A.M., and Frith, U. 1987. Metarepresentation and autism: how not to lose one's marbles. Cognition 27:291-294.
Liberman, A.M., and Mattingly, I.G. 1985. The motor theory of speech perception revised. Cognition 21: 1 - 36.
Liberman, A.M., and Whalen, D.H. 2000. On the relation of speech to language. Trends in Cognitive Sciences 4:187-196.
Lin, Y.Y., Simoes, C., Forss, N., and Hari, R. 2000. Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. Neuroimage 11:334-40.
Liu, J., Harris, A., and Kanwisher, N. 2002. Stages of processing in face perception: an MEG study. Nat Neurosci 5:910-916.
Lopes da Silva, F.H. 1991. Neural mechanisms underlying brain waves:from neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81-93.
Lord, C., Cook, E.H., Leventhal, B.L., and Amaral, D.G. 2000. Autism spectrum disorders. Neuron 28:355-363.
Loveland, K.A., Tunali-Kotoski, B., Pearson, D.A., Brelsford, K.A., Ortegon, J., and Chen, R. 1994. Imitation and expression of facial affect in autism. Dev Psychopathol 6:433-444.
Lu, Z.-L., Wang, J.-Z., and Williamson,S.J. 1992. Neuronal sources of human parieto- occipital alpha rhythm. In Biomagnetism:Clinical aspects,Excerpta Medica (M. Hoke, S. Erne ́, Y. Okada, G. Romani, Eds.), pp. 33-37. Elsevier Science Publishers B.V, Amsterdam.
80
Lütkenhoner, B., Lammertmann, C., Simoes, C., and Hari, R. 2002. Magnetoence-phalographic correlates of audiotactile interaction. Neuroimage 15:509-522.
Martin, J.H. 1991. The Collective Electrical Behavior of Cortical Neurons: The Elect-roencephalogram and the Mechanisms of Epilepsy. In Principles of Neural Science (E. Kandel,J.H. Schwartz,T.M. Jessell, Eds.), pp. 777-791. Prentice-Hall International Inc.
Martin, J.H., and Jessell,T.M. 1991a. Anatomy of the somatic sensory system. In Prin- ciples of Neural Science (E. Kandel, J.H. Schwartz, T.M. Jessell, Eds.), pp. 353-366. Prentice-Hall International Inc.
Martin, J.H., and Jessell, T.M. 1991b. Modality coding in the somatic sensory system. In Principles of Neural Science (E. Kandel, J.H. Schwartz,T.M. Jessell, Eds.), pp. 341 - 352. Prentice-Hall International Inc.
Matelli, M., Luppino, G., and Rizzolatti, G. 1985. Patterns of cytochrome oxidase acti-vity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125 - 136.
Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, G. 1986. Afferent and efferent projections of the inferior area 6 in the macaque monkey.J Comp Neurol 251:281- 98.
McCarthy,G., Allison,T., and Spences,D. 1993.Localization of the face area of human sensorimotor cortex by intracranial rcording of somatosensory evoked potentials. J Neurosurg 79:874-884.
McGuire, P.K., Paulesu, E., Frackowiak, R.S., and Frith, C.D. 1996. Brain activity during stimulus independent thought. Neuroreport 7:2095-2099.
McKelvey, J.R., Lambert, R., Mottron, L., and Shevell, M.I. 1995. Right-hemisphere dysfunction in Asperger's syndrome. J Child Neurol 10:310-314.
Mehta, A.D., Ulbert, I., and Schroeder, C.E. 2000. Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. Cereb Cortex 10:359-370.
Meltzoff, A.N., and Moore, M.K. 1977. Imitation of facial and manual gestures by human neonates. Science 198:74-78.
Meltzoff, A., and Gopnik, A. 1993. The role of imitation in understanding persons and developing a theory of mind. In Understanding other minds: perspectives from autism (S. Baron-Cohen, H. Tager-Flusberg, D. Cohen, Eds.), Oxford University Press, Oxford.
Mesulam, M.M.1990.Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597-613.
Mima, T., Nagamine, T., Nakamura, K., and Shibasaki, H. 1998. Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80:2215-2221.
Morgan, S.B., Cutrer, P.S., Coplin, J.W., and Rodrigue, J.R. 1989. Do autistic child-ren differ from retarded and normal children in Piagetian sensorimotor functioning? J Child Psychol Psychiatry 30:857-864.
Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J., and Dolan, R.J. 1996. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812-815.
Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., and Rizzolatti, G. 1997. Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226-22230.
Murray, E.A., and Mishkin, M. 1984. Relative contributions of SII and area 5 to tactile discrimination in monkeys. Behav Brain Res 11:67-83.
81
Murray, G.M., Zhang, H.Q., Kaye, A.N., Sinnadurai, T., Campbell, D.H., and Rowe, M. J. 1992. Parallel processing in rabbit first (SI) and second (SII) somatosensory cortical areas: effects of reversible inactivation by cooling of SI on responses in SII. J Neurophysiol 68:703-710.
Niedermeyer, E., and Lopes da Silva, F. (Eds.), Electroencephalography. Basic Prin-ciples Clinical Applications and Related Fields (Williams & Williams Europe LTD, 1998).
Nieminen-von Wendt, T., Salonen, O., Vanhala, R., Kulomäki, T., von Wendt, L., and Autti, T. 2002.A quantitative controlled MRI study of the brain in 28 persons with Asperger syndrome. Int J Circumpolar Health 61 Suppl 2:22-35.
Nishitani, N., and Hari, R. 2000. Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U S A 97:913-918.
Nishitani, N., and Hari,R.2002.Viewing lip forms:cortical dynamics. Neuron 36: 1211 - 1220.
Ohta, M. 1987. Cognitive disorders of infantile autism: a study employing the WISC, spatial relationship conceptualization, and gesture imitations. J Autism Dev Disord 17: 45-62.
Olsson, I., Steffenburg, S., and Gillberg, C. 1988. Epilepsy in autism and autisticlike conditions. A population-based study. Arch Neurol 45:666-668.
Oram, M.W., and Perrett, D.I. 1996. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. J Neurophysiol 76: 109-129.
Oram, M.W., and Richmond,B.J. 1999. I see a face-a happy face. Nat Neurosci 2: 856 - 858.
Ozonoff, S., Rogers, S.J., and Pennington,B.F. 1991. Asperger's syndrome: evidence of an empirical distinction from high-functioning autism. J Child Psychol Psychiatry 32: 1107-1122.
Paradiso, S., Johnson, D.L., Andreasen, N.C., O'Leary, D.S., Watkins, G.L., Ponto, L. L., and Hichwa,R.D. 1999. Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry 156:1618-1629.
Pelphrey, K.A., Sasson, N.J., Reznick, J.S., Paul, G., Goldman, B.D., and Piven, J. 2002. Visual scanning of faces in autism. J Autism Dev Disord 32:249-261.
Penfield, W., and Jasper, H., Epilepsy and the Functional Anatomy of the Human Brain (Little, Brown and Company, Boston, 1954).
Pennington, B.F., and Ozonoff, S. 1996. Executive functions and developmental psychopathology. J Child Psychol Psychiatry 37:51-87.
Perner, J. 1996. Simulation as explicitation of prediction-implicit knowledge about the mind: arguments for a simulation-theory mix. In Theories of Theories of Mind (P. Carruthers, P.K. Smith, Eds.), pp. 90-104. Cambridge University Press, Cambridge.
Perrett, D.I., Smith, P.A., Potter, D.D., Mistlin, A.J., Head, A.S., Milner, A.D., and Jeeves, M.A. 1985. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293-317.
Perrett, D.I., Harries, M.H., Bevan, R., Thomas, S., Benson, P.J., Mistlin, A.J., Chitty, A.J., Hietanen, J.K., and Ortega, J.E. 1989. Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146:87-113.
Perrett, D., Mistlin, A.J., Harries,M.H., and Chitty,A.J. 1990. Understanding the visual appearance and consequence of hand actions. In Vision and action:the control of grasping (M.A. Goodale, Eds.), pp. 163 - 342. NJ: Ablex, Norwood.
82
Perrett, D.I., Hietanen, J.K., Oram, M.W., and Benson, P.J. 1992. Organization and functions of cells responsive to faces in the temporal cortex. Philos Trans R Soc Lond B Biol Sci 335:23-30.
Pessoa, L., McKenna, M., Gutierrez, E., and Ungerleider, L.G. 2002. Neural proces-sing of emotional faces requires attention. Proc Natl Acad Sci USA 99:11458-11463.
Petitto, L.A., Holowka, S., Sergio, L.E., and Ostry,D. 2001. Language rhythms in baby hand movements. Nature 413:35-36.
Petrides,M., and Pandya,D.N. 1984.Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105-116.
Petrides, M., and Pandya, D.N. 1999. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011-1036.
Pfurtscheller, G.,and Aranibar,A. 1979. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46:138-146.
Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N.C., and Palmer, P. 1995. An MRI study of brain size in autism. Am J Psychiatry 152:1145-1149.
Pons, T.P., Garraghty, P.E., Friedman, D.P., and Mishkin, M. 1987. Physiological evidence for serial processing in somatosensory cortex. Science 237:417-419.
Poranen, A., and Hyvärinen, J. 1982. Effects of attention on multiunit responses to vibration in the somatosensory regions of the monkey's brain. Electroencephalogr Clin Neurophysiol 53:525-537.
Posner, M.I. 1980. Orienting of attention. Q J Exp Psychol 32:3-25.
Preisler, G., Ahlstrom, M., and Tvingstedt, A.L. 1997. The development of communi-cation and language in deaf preschool children with cochlear implants. Int J Pediatr Otorhinolaryngol 41:263-272.
Puce, A., and Perrett, D. 2003. Electrophysiology and brain imaging of biological motion. Philos Trans R Soc Lond B Biol Sci 358:435-445.
Puce, A., Allison, T., Bentin, S., Gore, J.C., and McCarthy, G. 1998. Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18:2188-2199.
Puce, A., Allison, T., and McCarthy, G. 1999. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb Cortex 9:445-458.
Ramachandran, V.S., and Rogers-Ramachandran, D. 1996. Denial of disabilities in anosognosia. Nature 382:501.
Randolph, M., and Semmes, J. 1974. Behavioral consequences of selective subtotal ablations in the postcentral gyrus of macaca mulatta. Brain Research 70:55–70.
Richer, F., Martinez, M., Robert, M., Bouvier, G., and Saint-Hilaire, J.M. 1993. Stimu-lation of human somatosensory cortex: tactile and body displacement perceptions in medial regions. Exp Brain Res 93:173-176.
Ritvo, E.R., Freeman, B.J., Scheibel, A.B., Duong, T., Robinson, H., Guthrie, D., and Ritvo, A. 1986. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 143: 862 - 866.
Rizzolatti, G., and Arbib, M.A. 1998. Language within our grasp. Trends Neurosci 21:188-194.
Rizzolatti, G., and Luppino,G. 2001. The cortical motor system. Neuron 31:889-901.
83
Rizzolatti, G., Scandolara, C., Gentilucci, M., and Camarda, R. 1981. Response pro-perties and behavioral modulation of "mouth" neurons of the postarcuate cortex (area 6) in macaque monkeys. Brain Res 225:421-424.
[HM: Rizzo puhuu "suupeilineuroneista" jo 1981, 15 vuotta ennen "yllättäviä peilineuronilöytöjä"...]
Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., and Matelli, M. 1988. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71:491-507.
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. 1996a. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131-141.
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu,E., Perani,D., and Fazio, F. 1996b. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246-252.
Rizzolatti, G., Fadiga, L., Fogassi, L., and Gallese, V. 1999. Resonance behaviors and mirror neurons. Arch Ital Biol 137:85-100.
Rizzolatti, G., Fogassi, L., and Gallese, V. 2001. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661-670.
Rodier, P.M., Ingram,J.L., Tisdale,B., Nelson,S., and Romano,J. 1996. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370:247-261.
Roelfsema, P.R., and Singer, W. 1998. Detecting connectedness. Cereb Cortex 8: 385-396.
Rogers, S.1999.An examination of the imitation deficit in autism.In Imitation in infancy (J. Nadel, G. Butterworth, Eds.),pp.255-283.Cambridge University Press, Cambridge.
Rogers, S., and Pennington, B.F. 1991. A theoretical approach to the deficits in infantile autism. Dev Psychopathol 3:137-162.
Rogers, S.J., Bennetto, L., McEvoy, R., and Pennington,B.F. 1996. Imitation and pan- tomime in high- functioning adolescents with autism spectrum disorders. Child Dev 67:2060-2073.
Rolls, E.T. 2000. The orbitofrontal cortex and reward. Cereb Cortex 10:284-294.
Rosen, B.R., Buckner, R.L., and Dale, A.M. 1998. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A 95:773-780.
Ruby,P., and Decety,J. 2001.Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546-550.
Rutter, M., and Schopler, E. 1987. Autism and pervasive developmental disorders: concepts and diagnostic issues. J Autism Dev Disord 17:159-186.
Salenius, S., Kajola,M., Thompson, W.L., Kosslyn,S., and Hari,R. 1995. Reactivity of magnetic parieto-occipital alpha rhythm during visual imagery. Electroencephalogr Clin Neurophysiol 95:453-462.
Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G., and Hari, R. 1996. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett 213:75-78.
Salenius, S., Schnitzler, A., Salmelin,R.,Jousmäki,V.,and Hari,R.1997. Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage 5: 221-228.
Salmelin, R., and Hari, R. 1994. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience 60:537-550.
Salmelin, R., Hämäläinen, M., Kajola, M., and Hari, R. 1995. Functional segregation of movement- related rhythmic activity in the human brain. NeuroImage 2:237-243.
84
Sams,M., Hietanen,J.K., Hari,R., Ilmoniemi,R.J.,and Lounasmaa,O.V. 1997. Face-specific responses from the human inferior occipito-temporal cortex. Neuroscience 77:49-55.
Scaife, M., and Bruner, J.S. 1975. The capacity for joint visual attention in the infant. Nature 253: 265 - 266.
Schnitzler, A., Salenius, S., Salmelin, R., Jousmäki,V., and Hari,R. 1995a. Involve- ment of primary somatomotor cortex in motor imagery:a neuromagnetic study. Society for Neuroscience Abstracts 21:518.
Schnitzler, A., Salenius, S., Salmelin, R., Jousmäki, V., and Hari, R. 1997. Involve-ment of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201-208.
Schnitzler, A., Salmelin, R., Salenius, S., Jousmäki, V., and Hari, R. 1995b. Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neuroscience Letters 200:25-28.
Schultz, R.T., Grelotti, D.J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., and Skudlarski, P. 2003.The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B Biol Sci 358:415-427.
Semrud-Clikeman, M., and Hynd, G.W. 1990. Right hemispheric dysfunction in non-verbal learning disabilities: social, academic, and adaptive functioning in adults and children. Psychol Bull 107:196-209.
Shah, A., and Frith, U. 1983. An islet of ability in autistic children: a research note. J Child Psychol Psychiatry 24:613-620.
Siegal, M., Carrington, J., and Radel, M. 1996. Theory of mind and pragmatic understanding following right hemisphere damage. Brain Lang 53:40-50.
Sigman, M., and Ungerer, J.A. 1984. Attachment behaviors in autistic children. J Autism Dev Disord 14:231-244.
Sigman, M., and Mundy, P. 1989. Social attachments in autistic children. J Am Acad Child Adolesc Psychiatry 28:74-81.
Simoes, C., and Hari, R. 1999. Relationship between contra- and ipsilateral stimu-lation in the human second somatosensory cortex SII. Neuroimage 10: 408 - 416.
Simoes, C., Mertens, M., Forss, N., Jousmäki,V., Lütkenhoner, B., and Hari, R. 2001. Functional overlap of finger representations in human SI and SII cortices. J Neurophysiol 86:1661-1665.
Smalley, S.L., and Asarnow, R.F. 1990. Cognitive subclinical markers in autism. J Autism Dev Disord 20:271-278.
Smith, I.M., and Bryson, S.E. 1994. Imitation and action in autism: a critical review. Psychol Bull 116:259-273.
Starr, A., and Cohen, L.G. 1985. 'Gating' of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348:183-186.
Steffenburg, S., Gillberg, C., Hellgren, L., Andersson, L., Gillberg, I.C., Jakobsson, G., and Bohman, M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30:405-416.
Steinmetz, P.N., Roy, A., Fitzgerald, P.J., Hsiao, S.S., Johnson, K.O., and Niebur, E. 2000. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187-190.
Stenbacka, L., Vanni, S., Uutela, K., and Hari,R. 2002. Comparison of minimum cur- rent estimate and dipole modeling in the analysis of simulated activity in the human visual cortices. Neuroimage 16: 936 - 943.
85
Stone, V.E., Cosmides, L., Tooby, J., Kroll, N., and Knight, R.T. 2002. Selective impairment of reasoning about social exchange in a patient with bilateral limbic system damage. Proc Natl Acad Sci USA 99:11531-11536.
Stone, V.E., Baron-Cohen, S., Calder, A., Keane, J., and Young, A. 2003. Acquired theory of mind impairments in individuals with bilateral amygdala lesions. Neuropsychologia 41:209-220.
Strafella, A.P., and Paus, T. 2000. Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11: 2289 - 2292.
Streit, M., Dammers, J., Simsek-Kraues, S., Brinkmeyer, J., Wolwer, W., and Ioannides, A. 2003. Time course of regional brain activations during facial emotion recognition in humans. Neurosci Lett 342: 101 - 104.
Stuss, D.T., Gallup, G.G., Jr., and Alexander, M.P. 2001. The frontal lobes are necessary for 'theory of mind'. Brain 124: 279 - 286.
Szatmari, P., Bryson, S.E., Streiner, D.L., Wilson, F., Archer, L., and Ryerse, C. 2000. Two-year outcome of preschool children with autism or Asperger's syndrome. Am J Psychiatry 157:1980-1987.
Tabert, M.H., Borod, J.C., Tang, C.Y., Lange, G., Wei, T.C., Johnson, R., Nusbaum, A.O., and Buchsbaum, M.S. 2001. Differential amygdala activation during emotional decision and recognition memory tasks using unpleasant words: an fMRI study. Neuropsychologia 39: 556 - 573.
Tager-Flusberg, H. 1996. Brief report: current theory and research on language and communication in autism. J Autism Dev Disord 26: 169 - 172.
Tanaka, K. 2001. Late responses and perceptual awareness. Nat Neurosci 4: 225 - 6.
Tantam, D. 1993. The developmental psychopathology of emotional disorders. J R Soc Med 86: 336 - 340.
Ter-Pogossian, M.M., Phelps, M.E., Hoffman, E.J., and Mullani, N.A. 1975. A positron-emission transaxial tomograph for nuclear imaging (PET). Radiology 114: 89 - 98.
Thorpe, S.J., Rolls, E.T., and Maddison, S. 1983. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res 49: 93 - 115.
Tiihonen, J., Hari, R., and Hämäläinen, M. 1989a. Early deflections of cerebral magnetic responses to median nerve stimulation. Electroencephalogr Clin Neurophysiol 74: 290 - 296.
Tiihonen, J., Kajola, M., and Hari, R. 1989b. Magnetic mu rhythm in man. Neuroscience 32: 793 - 800.
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., and Miyashita, Y. 1999. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401: 699 - 703.
Trepagnier, C., Sebrechts, M.M., and Peterson, R. 2002. Atypical face gaze in autism. Cyberpsychol Behav 5: 213 - 217.
Treue, S. 2001. Neural correlates of attention in primate visual cortex. Trends Neurosci 24: 295 - 300.
Turman, A.B., Ferrington, D.G., Ghosh, S., Morley, J.W., and Rowe, M.J. 1992. Parallel processing of tactile information in the cerebral cortex of the cat: effect of reversible inactivation of SI on responsiveness of SII neurons. J Neurophysiol 67: 411- 429.
Umilta, M.A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., and Rizzolatti, G. 2001. I know what you are doing. a neurophysiological study. Neuron 31: 155 - 165.
Uutela, K., Hämäläinen, M., and Somersalo, E. 1999. Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10: 173 - 180.
86
Vallbo, A.B., and Wessberg, J. 1993. Organization of motor output in slow finger movements in man. J Physiol 469:673-691.
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happe, F., Falkai, P., Maier, W., Shah, N.J., Fink, G.R., and Zilles, K. 2001. Mind reading: neural mechanisms of theory of mind and self-perspective. Neuroimage 14:170-181.
Wapner, S., and Cirillo,L. 1968. Imitation of a model's hand movements: age changes in transposition of left-right relations. Child Dev 39:887-894.
Whalen, P.J., Rauch, S.L., Etcoff, N.L., McInerney, S.C., Lee, M.B., and Jenike, M.A. 1998. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 18:411-418.
Whiten, A., and Brown,J. 1999.Imitation and the reading of other minds: perspectives from the study of autism, normal children and non-human primates. In Intersubjective communication and emotion in ontogeny:A sourcebook (S.Braten,Eds.),pp. 260- 280. Cambridge University Press, Cambridge.
Wicker, B., Michel, F., Henaff, M.A., and Decety, J. 1998. Brain regions involved in the perception of gaze: a PET study. Neuroimage 8:221-227.
Williams, J.H., Whiten, A., Suddendorf, T., and Perrett, D.I. 2001. Imitation, mirror neurons and autism.
Neurosci Biobehav Rev 25:287-295.
Williamson, S.J., and Kaufman, L. 1989. Advances in neuromagnetic instrumentation and studies of spontaneous brain activity. Brain Topogr 2:129-139.
Wimmer, H.,and Perner,J.1983.Beliefs about beliefs: representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition 13: 103-128.
Wing, L. 1981a. Asperger's syndrome: a clinical account. Psychol Med 11:115-129.
Wing, L. 1981b. Sex ratios in early childhood autism and related conditions. Psychiatry Res 5:129-37.
Wing, L. 1993. The definition and prevalence of autism: a review. Eur Child Adolesc Psychiatry 2:61-74.
Winner, E., Brownell, H., Happe, F., Blum,A., and Pincus,D. 1998. Distinguishing lies from jokes: theory of mind deficits and discourse interpretation in right hemisphere brain-damaged patients. Brain Lang 62:89-106.
Winston, J.S., Strange, B.A., O'Doherty, J., and Dolan, R.J. 2002. Automatic and in-tentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci 5: 277-283.
Wohlschläger, A., and Bekkering, H. 2002. Is human imitation based on a mirror-neu-rone system? Some behavioural evidence. Exp Brain Res Imitation, mirror neurons and autism.143:335-341.
Wolff, S., and McGuire,R.J. 1995. Schizoid personality in girls: a follow-up study-what are the links with Asperger's syndrome? J Child Psychol Psychiatry 36: 793 - 817.
Wood, C.C., Cohen, D., Cuffin,B.N., Yarita,M., and Allison,T. 1985. Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227:1051- 1053.
Wood, C.C., Spencer, D.D., Allison, T., McCarthy, G., Williamson, P.D., and Goff, W. R. 1988.Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68:99-111.
Yang, T.T., Menon, V., Eliez, S., Blasey, C., White, C.D., Reid, A.J., Gotlib, I.H., and Reiss, A.L. 2002. Amygdalar activation associated with positive and negative facial expressions. Neuroreport 13:1737- 1741.
87
Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Doernberg, N., Boyle, C., and Murphy, C. 2003. Prevalence of autism in a US metropolitan area. JAMA 289:49-55.
***
https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(04)00024-5
FOXP2 and the mirror system
Abstract
References
Corballis, M.C. The origins of modernity: Was autonomous speech the critical factor? Psychol. Rev. (in press).
Article Info
IDENTIFICATION
DOI: 10.1016/j.tics.2004.01.007
Copyright
ScienceDirect
Access this article on ScienceDirectRelated Articles
- Cancer Clinical Trials: The Rear-View Mirror and the Crystal Ball, Cescon et al.CellFebruary 09, 2017Open Archive
- Regeneration of mirror symmetrical limbs in the axolotl
- Slack et al.CellMay 01, 1978
- A Mirror-Symmetric Excitatory Link Coordinates Odor Maps across Olfactory Bulbs and Enables Odor Perceptual UnityGrobman et al.NeuronAugust 02, 2018
- Biogenesis of poxviruses: Mirror-image deletions in vaccinia virus DNAMcFadden et al.CellSeptember 01, 1979
- Visual Optics: Remarkable Image-Forming Mirrors in Scallop EyesWarrantCurrent BiologyMarch 19, 2018
https://phys.org/news/2009-05-humanized-mice-volumes.html
Why can we talk? 'Humanized' mice speak volumes
May 28, 2009,
Read more at: https://phys.org/news/2009-05-humanized-mice-volumes.html#jCp
Read more at: https://phys.org/news/2009-05-humanized-mice-volumes.html#jCp
Read more at: https://phys.org/news/2009-05-humanized-mice-volumes.html#jCp
Read more at: https://phys.org/news/2009-05-humanized-mice-volumes.html#jCp
Mice carrying a "humanized version" of a gene believed to influence speech and language may not actually talk, but they nonetheless do have a lot to say about our evolutionary past, according to a report in the May 29th issue of the journal Cell, a Cell Press publication.
"In the last decade or so, we've come to realize that the mouse is really similar to hu-mans," said Wolfgang Enard of the Max-Planck Institute for Evolutionary Anthropolo-gy. "The genes are essentially the same and they also work similarly." Because of that, scientists have learned a tremendous amount about the biology of human diseases by studying mice.
"With this study, we get the first glimpse that mice can be used to study not only disease, but also our own history."
Enard said his team is generally interested in the genomic differences that set humans apart from their primate relatives. One important difference between humans and chimpanzees they have studied are two amino acid substitutions in FOXP2. Those changes became fixed after the human lineage split from chimpanzees and earlier studies have yielded evidence that the gene underwent positive selection. That evolutionary change is thought to reflect selection for some important aspects of speech and language.
Article
No Evidence for Recent Selection at FOXP2 among Diverse Human Populations Graphical
No support for positive selection at FOXP2 in large genomic datasets.
Sample composition and genomic scale significantly affect
An intronic ROI within FOXP2 is expressed in human brain cells and cortical tissue
Ingressin viitteet
" J. exp. Biol. 146, 87-113 (1989)
Summary
A variety of cell types exist in the temporal cortex providing high-level visual descriptions of bodies and their movements. We have investiga-ted the sensitivity of such cells to different viewing conditions to de-termine the frame(s) of reference utilized in processing. The respon-ses of the majority of cells in the upper bank ofthe superior temporal sulcus (areas TPO and PGa) found to be sensitive to staticand dyna-mic information about the body were selective for one perspective view (e.g. right profile, reaching right or walking left). These cells can be considered toprovide viewer-centred descriptions because they depend on the observer's vantage point. Viewer-centred descriptions could be used in guiding behaviour. They could also be used as an in-termediate step for establishing view-independent responses of other cell types which responded to many or all perspective views selective-ly of the same object (e.g. head) or movement. These cells have the properties of object-centred descriptions, where the object viewed provides theframe of reference for describing the disposition of object parts and movements (e.g. head on top of shoulders, reaching across the body, walking forward 'following the nose'). For some cells in the lower bank of the superior temporal sulcus (area TEa) the responses to body movements were related to the object orgoal of the move-ments (e.g. reaching for or walking towards a specific place). This goal-centred sensitivity to interaction allowed the cells to be selective-ly activatedin situations where human subjects would attribute causal and intentionalrelationships.
Key words: temporal cortex, single cell, face, action.
... "
Mitä WWW...???!!! TÄÄLLÄHÄN se pölhölä on rivissä kun köyhän talon porsaat!!!

Publications (11)
Citations (1,297)
16.06.2005 01:47:09
176429
Rizzolattin "peiliSOLUhavaintoja" ei ole pystytty vahvistamaan.
Harmis löysi viestissä 176090 milenkiintoisen linkin sosiobiologistikirkon sisäiseen keskusteluun ”peilisoluista”:
Harmaa.Eminenssi kirjoitti 12.06.2005 (176090)...
>Tällaista keskustelua aiheesta muualla:
>http://www.interdisciplines.org/mirror/papers/4/pr
RK (176097): Antipavlovistikirkon sisäistä jargoonia.
Mutta ERITTÄIN MIELENKIINTOISTA heti ensimmäisessä jutussa,että nimenomaan SOLUTASON ilmiöitä (ehdollistuneita tai muita) EI OLE EDES HAVAITTU muualla kuin Rizzolatti makaki-apinoilla!
Ja itse asiassa, kaikki muu tohina huomioiden tuon asian ympärillä, SIIHENKÄÄN "HAVAINTOON" EI TAIDA OLLA KAUHEASTI LUOTTAMISTA!
Arbib myös pulputtaa kovasti matkimisesta apinoilla,ja löytää siihen alkeellisilla api-noilla rudimentaarisen ehdottoman (tai leimaus-) refleksinkin, VAIKKA "PEILISOLU-TEORIAN" ISÄT Goldmann ja Gallese kategorisesti "KIELTÄVÄT" MATKIMISILMIÖIDEN OLEMASSAOLON apinoilla ja laajemminkin luonnossa” :
http://keskustelu.skepsis.fi/Message/FlatMessageIndex/175827?page=1#175827
Otetaanpa muutama kommentti tuolta tarkastelun alle.
” 1) Much of the discussion of “mirror neurons” is based on metaphorical discussion of “mirror systems” rather than on analysis of actual neurophysiological data.
Mirror neurons have only been measured in macaque monkeys. Human brain ima-ging data only provide evidence for mirror systems – i.e., neural regions active both during the execution of a class of actions and during the observation of actions from that class. A mirror system need not contain mirror neurons, though it is generally assumed that it will. “
Kommenttini yllä.
“2) My own work with Rizzolatti has suggested an evolutionary path from a mirror system for grasping via a mirror system that supports imitation [not present in more than rudimentary form in monkeys] to a mirror system that can support language [unique to humans]. But this is a theory. As far as I know, there is no evidence that mirror neurons are involved in language, imitation, or intersubjectivity. Rather, there is suggestive evidence that mirror systems may be related to these functions. “
RK: On olemassa ja tutkittuna myös ihan muita ja parempia selityksiä kielen tunnis-tamiselle ja oppimisella, jotka eivät TARVITSE YHTÄÄN SE ENEMPÄÄ ainakaan geneettisiä ”PEILISYSTEEMEITÄ” kuin ”-SOLUJAKAAN”:
http://keskustelu.skepsis.fi/Message/FlatMessageIndex/162827?page=1#162827
Kuten Arbibkin tavallista rehellisempänä sosiobiologistina aiheellisesti mainitsee.
” ) In computer science and engineering, simulation involves the ability to predict a trajectory in quantitative detail. However, if we look at data on mirror neurons, there is no evidence of simulation at such a level of detail. Even worse, to reiterate one of Csibra’s points, many a mirror neuron is only “broadly congruent”. Again, we know there are mirror neurons that fire both when the monkey breaks a peanut and when he hears the sound of a peanut breaking (Kohler et al., 2002). But since the sound gives no information about the manner of breaking, it is unclear what justifies calling this “simulation” rather than just “classification”. If this concern is accepted, one must ask whether the “classification” theory of intersubjectivity loses any essential features of the “simulation” theory. “
Olen jossakin hieman erheellisesti maininnut, että ehdollistumisteorian mukainen mielenteoria kuuluu ”peilisolu- / -systeemiteoreetikkojen” kategoriaan ”simulaatioteoriat” (enemmänkin kuin Goldmannin kategoriaan ”teoriateoriat”).
Nyt niillä on kuitenkin uusi kategoria ”luokitteluteoria” (classification theory), johon se vasta istuukin hyvin, esimerkkinä juuri pähkinänkuoren rikkomisprodeduuri, joka ak-tivoituu myös rikkontuvan pähkinänkuoren aiheuttamasta äänestä,eikä vain sellaisen työn tekemisestä tai katselemisesta! (Itse asiassa siitä on vain yksi kukonaskel sym-bolifunktioon, että pähkinänkuoren rikkomisääni yhdistetään johonkin kellonkilauk-seen, tai SANAAN, joka tuo sen koko ehdollisen refleksin erilaisine variaationeen aktiiviseksi.)
” 4) Which leads into the observation that “classification” in the sense of mere “pattern recognition” in no way equals understanding or empathy. “
Arbib erehtyy siinä, että tuo refleksin aktivoituminen toiminnan äänestä ei olenkaan liittyisi YMMÄRTÄMISEEN: se ei vain liity, vaan se suorastan ON sitä!
Mutta EMPATIAAN sen ei todellakaan tarvitse liittyä millään tavalla: yhdistetynä muihin toiminalisiin kuvioihin se ”ymmärtäminen” voi aiheuttaa esimerkisi reaktion, joka ihmisllä vastaisi osapuilleen seuravaa: ”nyt se p..le löysi kumminkin sen mun piilottamani pähkinän, ja rikkoi sen! Turpiin tulee!"
” In other words, it is not the mirror neuron firing itself that is crucial, but rather activity in a widely distributed neural system of which the mirror neurons are part – and it is not even established that mirror neurons are more significant than quasi-mirror neurons in this regard. ”
“Peilisolusta” pidetään kuitenkin kiinni kuin sika limpusta, vaikka sitä EI TARVITA MIHINKÄÄN, ja HAVAINTOKIN niistä on asetettu kyseenalaiseksi! Lisäksi kehitel-lään uusia stiiknafuuliota, kuten ”kvasipeilisoluja” (jotka aktivoituvat havaitessa, mutta eivät tehdessä)!
SENKÖ TÄYTISEEN tarvitaan (vielä lisää) tuollaisia VALEKÄSITTEITÄ, se alkupe-räinen ”peilisolun” valekäsite oli fysiologisesti tarpeeton, koska jokainen aivokuoren pinnan solu olisi sen mukaan ainakin jonkin asian ”peilisolu”, mutta tuo ”kvasipeiliso- lu” on jo LOOGISESTIKIN saman tason "käsite" kuin vanhaa lasten vitsiä lainatakse-ni ”saippuan nimittäminen ´valeoravaksi´”, koska ”saippualla ja oravalla on yhteinen ominaisuus, että molemmat pääsevät puuhun, paitsi saippua”!
” 5) We must distinguish what the macaque data from Parma tell us about mirror neurons from what we tend to claim they tell us. “
OLOSUHTEET HUOMIOON OTTAEN: terävästi päätelty…: on pidettävä erillään se, mitä tulokset kertovat, ja mitä "me" (="sosiobiologistikirkko") HALUAMME USKOA niiden tarkoittavan!
Ei käynyt niin kuin pikku Kallelle, kun USKONNON opettaja kysyi, että "mikä on rus-kea ja karvainen ja hyppii oksalta oksalle". Kalle vastasi,että ”Ensin tuli vähän muuta mieleen, mutta OLOSUHTEET HUOMIOIDEN vastaan, että se on Jeesus-lapsi”.
(Vastaavalla odotusarvojen yodennäköisyystasolla ovat ehdollistumisteorian (”orava”) ja ”peilisolutoerian” (”Jeesus-lapsi”) edustamat tulkinnat neurofysiologisista kokeista….)
” 6) [Gerely] Csibra suggests that “a plausible counter-hypothesis for the role of MNs would be that they are involved in the prediction or anticipation of subsequent — rather than in the simulation of concurrent — actions of the observed individual.”
MITEN tuo on muka “peilisoluteorian” vastahypoteesi?
Jos siellä ”peilisolussa” on jokin TOIMINTA koodattuna, niin sehän on sitä juuri ”toimenpiteiden seurantona”, miten se muuten siellä voisi olla?
Mutta helvetin paljon yksinkertaisemmin tuollainen selittyy ehdollistumisteorialla ja ILMAN SOLUTASON KOODAUSTA, koska kullakin niillä osatoiminnoilla voi olla ja on oma refleksikaarensa SAMASSA "PROSESORISSA", ja niiden välille tarvitaan vain järjestävä yhteys, jotta niistä saadaan ”koko toiminnan refleksikaari” seurantoi-neen! Tuohon viime mainittuun voi sitten ärsykkenä viitata sana tai vaikka pähkinän-kuoren tietynlainen risahdus apinan salavarastolla. Tämä on sitä ehdollisten reflek-sien SYSTEEMISYYTTÄ, että ”ylin” ja ”abstraktein” taso määrää, ja ohjaa hierarki-sesti niihin alempiin , perustavampiin, alkupeäisempiin. Sellaista ei esiinny genetti-sillä erillisillä ehdoTTOMilla reflekseillä, joissa taas ”alin määrää” . (Esimerkiksi vaikka olisi kuinka herkullisia ruokia ja kuinka kauhea nälkä, mutta sormi pistetään kurkkuun, niin yrjö tulee. ”Vieras esine kurkussa, jota ei voi nielaista” on nimittäin originaalinen laukaiseva ärsyke).
” 7) Finally, let me note that simulation theorists seldom address the fact that we may be observing others while still going about our own lives. To address this, the simu-lation theorist must explain how the same neural circuitry could support the simula-tions of the others at the same time as it supports our own actions, and how it solves the binding problem of keeping the neural representations of agents and actions properly paired as the drama unfolds. “
Tässäkään ei ole ehdollistumisteorian valossa mitään ihmellistä: kaksi eri toimintoa voi hyödyntää yhtä aikaa samaa aktivoitua refleksikaarta, siitä on usein vain hyötyä, jos se on muutakin kautta aktiivisena (sanotaan vaikka bändisoitossa tai pariluiste-lussa, missä on toisella silmällä tai korvalla seurattava naapureiden suoritusta, tuol-lainen ei oikein automatisoitunesti muuten onnistuisikaan). Mutta jos kaksi henkilöä tekee samaa proseduuria hiukan eri tahtiin ja havainnoi toisiaan, niin sitten voi sekaanusta sattua, esimerkiksi siten, että jäljessä oleva jättää pois jonkin vaiheen ja jatkaa erehdykdessä samasta kohdasta missä se toinen suorittaja on.
Sillä, ovatko aktivoituvat ilmiöt ”solutason simulaatiota” vai suhteellisesti objektivoitunutta "toimnnan vakiomallia", on olennainen merkitys tukinnan kannalta.
Siitä nämä Gergely Csibran kommentit:
” 1. The existence of "mirror systems" does not tell us anything about simulation. Simulation theories require not only that the same neural substrate be involved in the execution and observation of actions, but also that the actual representations match between these domains. The claim that mirror neurons "mirror" actions has implicitly (and sometimes explicitly) been extended to "mirror systems" by analogy and terminology. As Arbib notes, there is no evidence supporting this claim. “
Ilman “mätsäystä” ei ole, tai ei tarvita, “peilisolujakaan”…
Nyt tullaan siihen, mikä olisi luokitteluteorian (joka siis sopii ehdollistumisteorian ja kielellisen ajateluteoriankin kanssa, jos sen ei oleteta olevan keenissä) ja ”simulaatioteorian” ero:
2. Arbib asks "whether the 'classification' theory of intersubjectivity loses any essen-tial features of the 'simulation' theory." Yes, it does - it loses its main point. If an action is 'classified' without simulation, then it is understood without simulation, and it is no longer "devoid of meaning" (Rizzolatti et al., 2001), however this meaning is elaborated by further processes.
“Simulaatioteorialla” voi pyyhkäistä tiettyä paikkaa ”luokitteluteorian” hyväksi, ja saman tien ”automaattisella mielenlukemisella”.
Jos esiintyy ”simuloivaa mielenlukemista” se on yhteisen harjoittelun tulos jossakin useamman henkilön työ- tmv. prosessissa. Ja se koskee pelkästään sitä tiettyä, yhteistä suoritusta edellyttävää prosessia.
Seuraavat pykälää kovempien "peisoluteorian" kannatajien "kriittiset kommentit" näistä osin kerettiläisistä huomiosta ovat mielenkiintoista paljastavaa luettavaa "peilisolutoerian" kannalta...
Pätkaisen tähän tällä kertaa, ja palaanniihin tuonnempana, inshallah...
RK
" With Richard Didday, he developed one of the first winner-take-all neural networks in 1970. More recently, with Giacomo Rizzolatti, the leader of research team that discovered mirror neurons, he proposed an evolutionary link between mirror neurons, imitation, and the evolution of language. "
Vieläkin kaemmaksi rikostutkinassa päästään:
http://keskustelu.skepsis.fi/Message/FlatMessageIndex/150509?page=1#150670
RK
14.09.2004 00:11:10
150670
Re: perustosiasiat, "peilisolut" on jo 1968 hahmoteltua poliittista "eurotiedettä
H5 kirjoitti 12.09.2004 (150560)...
>Hyvä RK
>Tietääkseni ainakaan missään neurologisissa julkaisuissa ei ole vielä >nimenomaisesti väitetty että ns. peilisolut olisivat rakenteeltaan
mitenkään erilaisia >muista saman alueen (F5) soluista ts. nimenomaan tiettyjen geenien aktivoituminen
>juuri näissä neuroneissa tekisi niistä peilisoluja. Kerro jos tiedät jotain muuta.
“Peilisolun” käsite on kopioitu kritiikittömästi Rizzolattilta, ja sitä pidetään apinoilla ”todistettuna”, vaikka Rizzolatti ei mitään sellaista ole todistanut (ja aivan tarkasti ottaen ei niin edes välitä tehneensä):
http://www.cercor.oupjournals.org/cgi/content/full/12/8/847
“PeiliSOLUUN”,siis mineomaan SOLUUN eikä esimerkiksi hermokudoksen synapsi- yhteyksiin, on muka ”koodattuna toimintaa” (tarkasti ottaen käytetään ilmausta ”solun koodaamaa”, kuin se olisi jokin ”itsenäinen subjekti”, äärimmäisen sekavaa ja epä-määräistä kielenkäyttöä, kuten näissä yhteyksissä tavaksi on tullut, muistettakoon vain vaikkapa Tooby&Cosmidesin houru ”EP Primer):
“ Within area F5 there is a class of neurons, known as mirror neurons, that respond to the sight of another monkey or experimenter performing the same type of action encoded by that neuron (Di Pellegrino et al., 1992 ; Rizzolatti et al., 1996a ). “
Erittäin kummallista jopa “evoluutiopsykologiankin teorian” kannalta tässä yhteydes- sä on että ”KYKY ON KEHITTÄNYT” sen (”pienen” , ”spesialisoituneen” á la Tooby & Cosmides) ”laitteen”, JOLLE SE ITSE KYKY SITTEN KUITENKIN PERUSTUU (ei-vätkä ne OLEKAAN ”kehittyneet yhdessä” evoluutiossa, kuten sisnsä houru T&C:kin edelyttäisi:
“ Mirror neurons are characterized by their response to both observation and execution of the same action. It has been proposed that the ***human ability to imitate evolved out of the mirror system***, with its capacity to match directly observed and executed actions (Arbib, 2002 ). !
Jossakin on nyt matoja jopa “E.P::nkin kannalta…tieteestä puhumattakaan.
>:-]
Ja täältä sitten löytyvät ne ankarat antipavlovistit Chomskyt ja Pinkerit, joiden tuotanosta voi haulla etsiä nimeltä asiantuntevaa keskustelua tältäkin palstalta.
57. N. Chomsky. Knowledge of Language: Its Nature, Origin and Use, Praeger (1986).
59. S. Pinker and P. Bloom. Behav. Brain Sci. 12 (1990), pp. 707–784. Abstract-PsycINFO | $Order Document
Rizzolattin ja “peilisoluteorian” takana on EU:n jo 1968 organisoima sosiobiologisti-nen seura, jonka ssäntöjenmukaisena toimenkuvana on edistää ”aivolaitteiden (mechanism) ja käyttäytymisen suhteiden tutkimusta”.
Joten ”huippututkijoita” riittää kehuskelemaan toistensa ”löytöjä”…
Eivär ne ”pienet evoluution luomat spesialisoituneet laitteet” siis olekaan Tooby & Cosmidesin ”keksintöä”, eikä edes amerikalaista alkuperää, vaan poliitinen ohjelma selsiten etsimiseksi on esitetty fas… ei kun europiireistä jo 1968, ennen kuin E. O. WILSONKAAN oli ”sosiobiologiaansa” esitellyt!
Kova on ollut paine ”keksiä jotakin”…
>:-]
http://www.ebbs-science.org/RULES.htm
“The object of the Society shall be the furtherance of scientific enquiry within the field of the ***interrelationships of brain mechanisms and behaviour*** …
>Yksi teoria peilisolujen syntymisestä on se että lapsena
tapahtuvat käsien >tarrautumisliikkeet ja niiden visuaalinen havaitseminen
muokkaavat osan >aivosoluista niin että ne pystyvät myöhemmin aiheuttamaan saman reaktion kun
>toinenkin ihminen tekee vastaavan liikkeen .
Tuo on ehdollistumisteorian mukainen selitys eri aistinten informaation ja myös muiden toimia koskevien havaintojen yhdistämiselle. Ei TÄMÄ edelytä minkäänlaisia erikoisspesialisoituneita "pelisoluja".
>(tämä voisi ehkä selittää sen miksi ei-kädellisillä vastaavat kyvyt ovat heikommat,
>peilisolujärjestelmä ei pääse kehittymään kovin hyväksi jos eläin ei pääse >seuraamaan omien ruumiinosiensa liikettä kasvojensa edessä jatkuvasti)
Höpölöpö. Tietysti peili on yksi apuväline muiden joukossa parantaa havaintokyky-ään, mutta kyllä se on ihmisellä hyvin uusi keksintö varrattuna muihin "etuihimme" apinoihin nähden...
>Toisaalta ei myöskään ole perusteltua vielä väittää, että
peilisolujärjestelmän >kehityksessä ei myös geeneillä olisi osuutensa.
Kun sellaisia ei ole, niitä "peilisoluja", eivätkä nuo tutkimusmenetelmät edes mene solutasolle...
>Esim. pienet muutokset neuronien
>signaloitinopeuksissa, haarakkeiden
>pituuksissa, reagoimisessa välittäjäaineisiin ym. vaikuttavat
ratkaisevasti >neuroplastisuuteen ja peilisolujen tapauksessa ehkä osaltaan autismin syntyyn.
Voivat vaikutta suoraan autismin syntyyn, jos niissä jossakin onjotakin hyvin poikkeuksellista,ei SIIHENKÄÄN tarvita erityisiä "peilisoluja"...
>Ihmisen peilisolujärjestelmä on huomattavan monimutkainen.
Grrr....
>Se aktivoituu selvästi määritellyssä
>ajallisessa järjestyksessä noin 250
ms >kuluessa: näköaivokuori -> STS -
>> päälaenlohkon alaosa -> Brocan alue -
>> >liikeaivokuori. Brocan alue aktivoituu selvästi voimakkaammin
liikeaivokuori. Brocan alue jäljittelyn aikana kuin sormen tai
>suun liikkeiden suorittamisen
>yhteydessä.
Ähhh...
Brocan alueen aktivoituminen perustuu siihen perusfaktaan, että AJATTELU ON KIELELLISTÄ.
Venäläiset sitä aktivoitumista yrittivät kovasti silloisilla laitteilla näyttää toteen, mutta toiset, esimerkiksi behavioristit, eivät ottaneet uskoakseen näyttöön...
Mutta nyt uskovat,ja tietävät pilkulleen, mistä on kysymys, toisin kuin harit...
>On täysin mahdollista, että on olemassa geenejä joita ilman
pelisolujärjestelmän >syntyminen ei olisi mahdollista.
Grrr...
>Ei tarvita kuin tiraus liikaa tai liian vähän dopamiinia tietyille aivoalueille ja
tulevat >peilisolut opettelevatkin jonkun muun tehtävän.
Sitten ne EIVÄT OLE "OIKEITA PEILISOLUJA", vaan tavallisia ehdollisten refleksien hermostollisia solmualueita!
>Peilisolut ovat kiistatta neurotieteen merkittävin löytö pitkään aikaan.
Ne ovat samanlainen "merkittävä löytö" kuin Chomskyn "kielielin"...
>Nyt vain pitää oppia niiden toiminta, kehitys ja rakenne paljon paremmin.
Ei haaskata nyt rahaa hölynpölyteoriapohjalta lähtevään tutkimukseen, vaan tämä asia on pantava kansainväliseen syyniin, ja sitten pitää jatkaa niillä Lounasmaan hienoilla laitteilla tieteellisesti kestävältä teoriapohjalta.
RK
Muokannut: , 1/27/2013 2:13:36 PM
RK
14.09.2004 00:11:17
150677
Koko ja peilisolut...
Koko-gorillakin, jonka “älykkysosamääräksi on mainittu 90”, todistaa geenipeilisolujen puolesta:
http://nationalzoo.si.edu/publications/zoogoer/2002/4/primatethink.cfm
“ Frontal areas of the neocortex may also be involved in the use of visual information to plan and execute fine motor movements. When a monkey performs an action like reaching out and grasping a small object with its fingers, neurons in a certain part of the frontal neocortex “fire” wildly. Interestingly, Giacomo Rizzolatti from the University of Parma found that these same neurons fire when the monkey simply observes another monkey, or even a human, performing the same action. These mirror cells, as Rizzolatti dubbed them, may play a role in imitative behavior and learning through observation.
As the phrase “monkey see, monkey do” suggests,primates seem quite good at aping each other. In fact, striking examples of what appears to be observational learning come from studies of tool use in great apes. Primatologist Jane Goodall reported that infant and juvenile chimpanzees at Gombe National Park in Tanzania watch intently as their mothers break off small branches and poke them into holes, fishing for termites. The young chimps then make awkward attempts to copy their mothers. “
RK
14.09.2004 00:11:19
150679
Perustosiasiat: "peilisoluteoria" on "evoluutiopsykologiaa"
H5 kirjoitti 12.09.2004 (150560)...
>Hyvä RK
>Peilisolut ovat kiistatta neurotieteen merkttävin löytö pitkään
aikaan. Nyt vain pitää >oppia niiden toiminta, kehitys ja rakenne paljon paremmin.
Näistä linkeitä ilmenee, että "peilisoluteoria" on kuin onkin tavaramerkin luojien Tooby & Cosmidesinkin tunnustamaa "evoluutiopsykologiaa" (ns. "kosmista tuubaa"):
http://www.cogweb.ucla.edu/ep/Conceptual-3.html
Täällä on se "asiayhteys", josta edellinen on poimittu.
http://www.cogweb.ucla.edu/ep/index.html
Ja täältä löytyy, mitä sitten se asiayhteys "todella on":
http://keskustelu.skepsis.fi/Message/FlatMessageIndex/144845?page=2#144946
RK
Muokannut: , 1/27/2013 2:16:02 PM
Kommentit