Hesari-tyhmentymän hölynpöly”TIEDE”-lehden homehtuneen natsi”tieteen” pläjäys ”vapaasta tahdosta”

” Kokemus täysin vapaasta päätöksestä on illuusio, osoittavat neuropsykologiset kokeet. ” Kuva: Getty Images

Lyhyesti sanottuna todistelu perustuu ns.Bergerin aivoaaltojen, joita aivosähkökäy-rä EEG mittaa, ns.Libetin kokeelle/ilmiölle,joka osoittaa aivosähkökäyrällä (joka on oikeastaan magneettikäyrä) tapahtuvan aktivoitumista ennen päätöksentekoa. Tah-donkiistäjät tulkitsevat ”fysikaalisen päätöksen" kaikinpuolisesti tapahtuneen tuon aktivaation alussa, olevan sen ”fysikaalinen syy”.

Sattuu kuitenkin olemaan niin, että LIBETIN ILMIÖ EI ILMENE LAINKAAN NEURO-NITASOLLA,jossa taas ajattelu,yleensä glia-solujen säätelemänä ja ohjaamana. Ku-kin neuroni on eristetty sähkösysteemi, jonka sisä- ja ulkopuolen välillä on potetiaali- ero. Neuronien (eräiden muidenkin hermosolujen) väliset synapsit EIVÄT KYTKE NEURONEITA ”SÄHKÖLANGAKSI”, vaan siganaalien välitys niissä on KEMIALLIS-TA: välittyvä kemikaali GBA on sähköisesti neutraali, mutta sen ”valmistaminen” esi-synaotisessa solusa sitoo viejähaarakkeen aksonin signaalin tuomaa sähköä ja sen hajoaminen jälkisynaptisessa solussa vapautta sähköä. BERGERIN ALLOT / RYT-MIT EIVÄT OLE SYYSUHTEESSA NÄIHIN SYNAPSITAPAHTUMIIN, vaan ne ehkä jotenkin resetoivat koneistoa aikaisempin hermotapahtumien jäljiltä. (Tosin nehän toisaalta myös hallitusrti vaikutteavat uusiin tapahtumiin, mille varsinkin n. työmuisti perustuu.)

Päätöksentokotapahtuma voi ”aivotahtumana” olla hyvin pieni,jopa synaptinen. Olen- naista on, että se kytkee yhteen itseään paljon suuremmat potentiot. Päätösproses-sissa INFORMAATIO VAIKUTTAA INFORMAATIOON. Siitä ei kannata jauhaa, ”mi-ten informaatio (voi) vaikuttaa fysiikkaan”: sille ei ole yleistä kaavaa. Se riippuu siitä, mitkä fysikaaliset ilmiöt ovat muodostuneet joidenkin aivan muiden asioiden infor- maatioksi, ”kuvaksi”, joiden välityksellä ne originaalit ilmiö voivat edelleen vuoro vailkuttaa viipeellä eteenpäin.

Bergerin aivoaallot eivät ole erityistä natsitiedettä, vaikka aivosähkö- käyrän keksijä psykiatri Hans Berger olikin Hitlerin porukan salattu pää- ideologi, jokakeksi EEG:n hullujen tunnistamiseksi tapettaviksi, sillä ne aallot ovat todellinen ilmiö. Sen sijaa Libetin kokeen tahdonkiisto- tulkinnat ovat pesunkestävää natsitiedettä, ja Ber-ger oli myös taatunut hihkunut noista tulkinnoista innoissaan, jos hän olisi ne kokeet sattunut itse tekemään.

”TIEDE” estää kaiken vapaan keskustelun aiheesta pulinapalstallaan.

https://www.tiede.fi/artikkeli/uutiset/vapaa-tahto-pelkka-harha

Vapaa tahto on pelkkä harha


 

vapaatahto1_getty_0.jpg

Mikko Puttonen
 

Uskomme, että teemme tietoisia päätöksiä, mutta oikeasti aivot päättävät, ennen kuin itse päätät mitään.

Mitä tapahtuu, kun poimit pöydältä kahvikupin? Muodostat ensin aikomuksen, josta lähtee tieto aivojen tekoja suunnitteleville hermosoluille. Nämä lähettävät määräyk-sen eteenpäin liikehermoille, jotka komentavat käden ja sormien lihaksia. Ne tekevät työtä käskettyä, ja lopulta pitelet kuppia kädessäsi. Eikö niin?

Tämä tapahtumien järjestys vastaa arkikokemustamme niin hyvin,että lähes jokainen vastaa kyllä.

Kokemus ei kuitenkaan vastaa todellisuutta. Lukuisat tutkimukset osoittavat, että aivomme päättävät teon tekemisestä ensin ja tietoinen aikomus herää vasta sen jälkeen.

Fysiologit huomasivat jo 1960-luvulla, että noin sekuntia ennen kuin ihminen tekee jotain, aivojen sähkökäyrässä näkyy niin sanottu valmiuspotentiaali. Sitä pidettiin pitkään merkkinä tahdosta. Luulon kumosi yhdysvaltalainen neurotieteilijä Benjamin Libet 1980-luvulla.

Libet kytki koehenkilöt sähkökäyrää piirtävään eeg-laitteeseen. Sitten hän pyysi heitä liikauttamaan rannettaan milloin halusivat. Koehen- kilöiden eteen oli asetettu kello-taulu,jonka viisari pyöri nopeasti.Heidän piti tarkkailla kelloa ja panna merkille, missä kohtaa viisari oli, kun he saivat päähänsä tehdä liikkeen. Se kertoisi tietoisen päätöksen hetken.

Kuten odotettua, liikettä edelsi aina valmiuspotentiaali. Yllättävää sen sijaan oli, että se näkyi aivosähkökäyrässä yli kolme sekunnin kymmenystä ennen tietoista päätös-tä käden liikauttamisesta. Aivomme siis tekevät ratkaisun ennen kuin tiedämme siitä itse. ”

RJK: Juttu on pelkkää ikivanhentunutta kumottua hörönlöröä provokaationakin.

Kukaan ei tiedä, mitä Libetin kokeen mittaamat Bergerin aivoaallot varsinaisesti mer-kitsevät.Ne rytmittävät jollakin tavalla esimerkiksi neuronien toimintoja. Ne saattavat tarkoittaa aikaisemman tilan pyyhkimistä ns. ultralyhystä muistista. Missään tapauk-sessa ne EIVÄT ole mikään ”ajattelun mekanismi”. Niiden löytäjä oli Hitlerin puolu-een salattu pääideologi,aivosähkökäyrä EEG:n keksijä Hans Berger. Hänen roolinsa natsipuolueesa salattiin sekä lännessä että idässä pitkään.


https://hameemmias.vuodatus.net/lue/2015/05/parapsykologiaa-natsi-saksassa-ja-neuvostoliitossa

Aivosähkökäyrä EEG:n kehittäjä Hans Berger oli natsijohdon salattu pääideologi

200px-HansBerger_Univ_Jena.jpg

Hans Berger

Tässä tarkastelen Hitlerin lähipiirin todellista ideologiaa ihmiskuvan alalla ja sen syntyä. USA:n Liittovaltion Terveysviraston (NIH) neurofysiologian osaston johtaja R. Douglas Fields tuo käänteentekevässä kirjassaan ”The Other Brain: From Dementia to Schizophrenia, …” esiin natsijohdon todellisen pääideologin, aivosähkökäyrän keksijä Hans Bergerin roolin, jota on pimitelty niin lännessä kuin idässäkin. Hän korjaa tuon virheen, josta on ollut paljon harmia tieteelle ja terveydenhuollolle.

…Berger kuului alusta pitäen SA:an ja siten natsipuolueeseen,tosiasiallisesti näiden johtoon:hänen hullujentunnistusteknologiaansa kehiteltiin nimenomaan hullujen tun-nistamiseksi, tapettaviksi! Ideologejahan piisasi, mutta Berger tarjosi (vain valituille) (vale)tieteellistä ”kokeellista näyttöä”! Natsiarmeijan pääpsykiatri Otto Wuth ei nähnyt psykiatrialla tieteenalana enää lainkaan tulevaisuutta:”Kuka viitsisi opiskella psykiat-riaa, kun siitä tulee niin pieni ala nyt (kun hullut kerran tapetaan pois)!” (Fields)

Sairaalloisella ja sairastelevalla Heinrich Himmlerillä oli taatusti muukin, ainakin oikean koulutuksen omaava henkilääkäri kuin tuossa roolissa hänen mukanaan valtiovierailuillakin kiertänyt tarttolaissyntyinen hieroja ja huijari, Suomen kaksoiskansalainen Felix Kersten…

Natsijohdon ihmiskuva oli samalla sekä äärimmäisintä ”sosiobiologiaa” että kaiken-kattavaa mystismiä, jossa ”kaikki on suorassa aaltoyhteydessä kaikkeen”. Se ei poi-kennut olennaisesti siitä, mitä he saarnasivat kaikelle kansalle. Vaikka keskeiset po-liittiset natsijohtajat eivät varsinaisesti itse lienekään olleet skitsofreenikkoja,he olivat ”mukana skitsokuviossa”, kuten sosiaalipsykiatri sanoisi.

Mielisairaus oli sitä kautta natsismin keskeisiä lähteitä ja sen syntyhistorian selittäjiä. ”Tajuntakenttäteoriallakin” on sotien jälkeenkin ollut kannattajana ainakin muuan ”prof.” Benjamin Libet (1916 – 2007), jonka ”Libetin kokeella” aivosähkökäyrällä todistellaan muka ”tahdon olemattomuutta”, koska ihminen on muka ”päättänyt jo ennen, kuin tietää sitä”. Noin EI ole asian laita tietoisesti ohjatussa toiminnassa. Tahtotapahtuman ei tarvitse näkyä aivosähkökäyrässä minään erityisenä piikkinä, se on luultavasti synaptinen.

220px-Benjamin_Libet.jpg

Benjamin Libet

… BERGERIN TEORIAN ”UUSI TULEMINEN”: YKSILÖN AIVOSOLUT KOMMUNIKOIVAT MYÖS SÄHKÖMAGNEETTISTEN RYTMIEN VÄLITYKSELLÄ

Tähän on sitten taas suhtauduttava ehdottomalla vakavuudella, sillä Fields arvoi aiheesta ilmestyneen uuden teoksen

How is the brain like a guitar? Hint: It is all about rhythm

Posted by: R. Douglas Fields | December 8, 2014

…Dr.Hans Berger,working at the Psychiatric Clinic at the University of Jena, Germa-ny in the 1920’s was the first person to discover that the human brain radiated waves of electrical energy that could be picked up by electrodes on the scalp. He performed his experiments in secret on hospital patients and on his own son in a small building separated from the rest of the hospital. Initially he believed that he had detected the physical basis for mental telepathy. He told no one in the scientific community about his mysterious findings until after five years of secret experiments.

Fundamentally, Berger, whose daily life was devoted to caring for people with mental illness,was searching for a physical basis for brain function.This was a leap of insight decades beyond his contemporaries. The idea that the human mind and mental ill-nes- ses have a physical basis of operation that could be reduced to physical princi-pals and understood by approaching the operation of the mind in the same way a physicist would approach any other phenomenon in nature – by physical measure-ment – was well outside the realm of thinking among his colleagues in psychiatry.

 

Puttonen:”Sittemmin useat tutkijat ovat tehneet samantapaisia kokeita ja saaneet sa- manlaisia tuloksia.Australialaisen South New Walesin yliopiston psykologian profes- sori Joel Pearson työtovereineen osoitti äskettäin kokeissaan,että päätöksen pystyy ennustamaan aivojen magneettikuvista jopa 11 sekuntia ennen kuin ihminen itse kokee tekevänsä sen. Tutkijat kykenivät ennustamaan, mitä väriä koehenkilö ajatteli.

Moni pitää tuloksia osoituksena siitä, että meillä ei ole vapaata tahtoa. Vuonna 2007 kuollut Libet itse uskoi, että vapaa tahtomme rajoittuisi eräänlaiseen veto-oikeuteen, tietoisuuden kykyyn pysäyttää aivojen aloittama teko. Vapauden hetki olisi siis se jo-kunen sekunnin kymmenesosa,joka erottaa tahdon tunteen syntymisen varsinaisesta ranteen liikautuksesta.

Libetin ehdotuksen ongelmana on, että teon pysäytys on teko sekin. Sitäkin edeltää väistämättä aivojen tiedostamaton päätös, jonka tuloksena pysäytys tapahtuu.

Emme näytä pääsevän mihinkään siitä, että aivot päättävät ja tietoinen mieli seuraa perässä. Neurobiologisesta koneistostamme ei siis löydy vapaata tahtoa.

 

Lue lisää

Kesäkuun Tiede-lehdessä on pitkä artikkeli, jossa tiedetoimittaja Mikko Puttonen kertoo, miten vapaata tahtoa on jäljitetty aivoista. Hän kertoo myös, miten vapaan tahdon puuttuminen muuttaa suhtautumistamme moraalikysymyksiin ja rikollisuuteen.

Jos aihe kiinnostaa, käy ostamassa paperilehti tai iPad-digilehti.

Jos olet Sanoman jonkin aikakauslehden tilaaja, voit lukea artikkelin kirjautumalla tilaajatunnuksillasi Digilehdet-palveluun.

Ellet ole vielä aktivoinut digilukuominaisuutta, tee se osoitteessa https://oma.sanoma.fi/aktivoi/digilehdet.

Aktivoinnin jälkeen pääset kirjautumaan suoraan digilehdet.fi-palveluun.

Ellet ole tilaaja, voit hyödyntää maksutonta tutustumistilausta, joka tarjoaa neljän viikon lukuoikeuden Tiede-lehden artikkeleihin.

… ”

Aihe on ollut parukymmentä vuotta keskutelupalstojen kestoJANKUTE, myös Erkon ”Tieteen” palstan.

https://hameemmias.vuodatus.net/lue/2015/02/tahto-vaan-vai-absoluuttisen-vapaa-tahto

Tieteen entinen kolumnisti hölynpölytoimittaja Syksy Räsänen kirjoitti ainakaan lu-moutuneesti "TIETEEN" kolumnissaan erään Wolf Singerin CENin _fysiikasta, joka "todistaa (vapaan, kaiken) tahdon mahdottoamaksi". Herra Singer EI KUITENKAAN OLE FYYSIKKO LAINKAAN, vaan LAMALAINEN MEDITAATIOYRITTÄJÄ JA -TUT-KIJA, joka oli tutkimassa hieman erikoista asiaa kuuluisassa (ja osaavassakin) Max Planck -instituutissa, ja pääsi osallistumaan siten myös CERNin kongressiin.

Räsänen ei siis erota "fysiikan" nimissä paskaa jauhavaa ketkua oikeasta fyysikosta. Minä olen hiukantoiselta fysiikan alalta ja ollut jo eläkkeelläkin jonkin aikaa, mutta väitän kyllä edelleen tunnistavani 100%:lla varmuudella henkilön, joka puhuu ihan puhdasta paskaa rakennusstatiikasta,ja noin 95% varmuudella henkilön, vaikka aka-teemikonkin (esimerkiksi Enqvistin tai Valtoajan) joka puhuu paskaa vaikka taivaan-mekaniikasta suhteellisuuteorista ja kavanttimekniikan perusperiaatteista )pirun moni yrittää), vaikka nuo eivät koultukseeni liitykään, mutta olen lukenut paljon hyvää neuvostoliittolaista kirjallisuutta niitäkin.

https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kumman_totuus

blogipohja_rasanen_uusi.jpg

Kirjoitin edellisessä merkinnässä siitä, miten virheellinen arkikäsityksemme maail-masta on kvanttimekaniikan valossa.Toinen modernin fysiikan peruskivistä, suhteel-lisuusteoria, on yhtä lailla kummallista. (Peruskivien yhteen muuraamisesta, ks. Mal-jan jäljillä.) Siinä missä kvanttifysiikan omituisuudet liittyvät epädeterminismiin, suh-teellisuusteoria osoittaa, miten väärä on yksinkertainen käsityksemme ajasta ja avaruudesta.

Suhteellisuusteorian mukaan aika ja avaruus eivät ole toisistaan riippumattomia, vaan muodostavat erottamattoman kokonaisuuden. Suppea suhteellisuusteoria, jos-sa tämä ajatus on täsmällisesti muotoiltu,oli valmis 1905. Yleinen suhteellisuusteoria käsittelee sitä, miten aika-avaruus ja sen sisältämä aine vuorovaikuttavat keskenään, ja se saavutti lopullisen muotonsa vuonna 1915.Suhteellisuusteoria on siis vielä vanhempaa perua kuin kvanttimekaniikka, ja se on yleisesti paremmin tunnettu. Se, että valon nopeutta ei voi ylittää on scifin myötä osa populaarikulttuuria, ja niinkin tekninen asia kuin massaan liittyvän energian määrää kuvaava yhtälö on tuttu lukemattomista huumorikuvista.

Nimi suhteellisuusteoria tulee siitä, että tietyt asiat ovat erilaisia eri havaitsijoille, eli suhteellisia. Valinta on sikäli onneton, että klassinen mekaniikka on yhtä lailla suhteellista, ja molemmissa teorioissa on myös asioita, jotka ovat samoja kaikille havaitsijoille. Teoriat eroavat vain siinä, mitkä asiat ovat suhteellisia ja mitkä eivät.

Esimerkiksi molemmissa teorioissa nopeus on suhteellista:lentokoneen nopeus mat-kustajan suhteen on nolla, taakse jäävän linnun suhteen satoja metrejä sekunnissa. Vastaavasti liike-energia riippuu havaitsijasta. Toisaalta esimerkiksi massa ei ole suhteellinen kummassakaan teoriassa.Suppean suhteellisuusteorian määrittelevänä piirteenä voi pitää sitä, että valon nopeus ei ole suhteellinen, vaan sama kaikille. Tässä mielessä nimi on erityisen harhaanjohtava - yhtä hyvin voisi puhua absoluuttisuusteoriasta.

Klassisessa mekaniikassa pituusvälit ja aikavälit ovat samoja kaikille: kellon nopeus ei vaikuta sen käyntiin. Suhteellisuusteoriassa esineiden pituus ja tapahtumien kesto kuitenkin ovat suhteellisia,koska liike yhdistää ne toisiinsa ajan ja avaruuden välisen riippuvuuden kautta.Nopeammin liikkuvan havaitsijan kello kulkee hitaammin, ja esi-neet ovat lyhyempiä. Jos kiitää LHC:n protonien nopeudella maapallon suhteen, niin pallon pintaa tallustavan ihmisen pituus on noin 0.5 millimetriä - pitkät yksilöt yltävät lähes 0.6 millimetriin. Tarkemmin sanottuna esineet liiskaantuvat vain suhteessa me-nosuuntaan, eli maapallo olisi 13 000 kilometriä leveä ja neljä kilometriä paksu levy. Vastaavasti havaitsijan kellon mukaan kuluu vain sekunti, kun maapallolla vierähtää vuosi.

Korostettakoon, että ei ole oikein sanoa,että esineet vain näyttävät liiskatuilta tai aika vain näyttää kuluvan hitaammin,sen enempää kuin sanottaisiin, että junan nopeus näyttää isommalta kun seisoo laiturilla sen sijaan, että olisi mukana vaunussa.

Suhteellisuusteorian kummallisuus ei lopu tähän. Arkijärjen mukaan voi ajatella, että jotkut asiat tapahtuvat samaan aikaan, riippumatta siitä, kuinka kaukana ne ovat toisistaan avaruudessa. Suhteellisuusteoriassa kuitenkin tapahtumien aikajärjestys on suhteellinen, jos kahden tapahtuman aikaväli on niin lyhyt,että valo ei olisi ehtinyt matkata niiden välillä. (Tämä johtaisi kaikenlaisiin paradokseihin, jos informaatiota voisi välittää valoa nopeammin.)

Asiaa voi havainnollistaa seuraavalla esimerkillä.Kaksi henkilöä,toinen Helsingissä ja toinen Melbournessa, laittavat kellonsa samaan aikaan, ja sopivat että helsinkiläi-nen lähettää sähköpostiviestin kello 14:00:00 ja melbournelainen 14:00:02, kaksi se-kunnin sadasosaa myöhemmin. Jos liikkuu tarpeeksi suurella nopeudella suhteessa Maahan, niin voi nähdä sähköpostin lähtevän ensin Melbournesta ja sitten Helsingistä.

Epäilyjen varalta sanottakoon että suhteellisuusteoria, kuten kvanttimekaniikka, on varmennettu kokeellisesti erittäin tarkasti. Kyse ei ole tieteellisestä spekulaatiosta, vaan tunnetuista tosiseikoista. Yllä kuvatut ilmiöt ovat suppeaa suhteellisuusteoriaa; yleinen suhteellisuusteoria, jossa aika-avaruus muuttuu ja kehittyy, sisältää vielä oudompaa käytöstä.

Aivojemme intuitiivinen kuva ajasta, avaruudesta ja aineesta on perusteiltaan täysin virheellinen, vaikka kuvaakin arkisia ilmöitä tarkasti. On kiehtovaa, että samanlainen tilanne tulee vastaan tarkasteltaessa aivojemme käsitystä monimutkaisimmasta tun-netusta fysikaalisesta systeemistä,ihmisaivoista itsestään.Meillä on intuitiivinen malli siitä, miten ajattelemme ja teemme päätöksiä: esimerkiksi koemme että meillä on va-paa tahto. Tutkimus on kuitenkin osoittanut tämän kuvan olevan harhainen siinä mis-sä luulomme aika-avaruudesta. Tästä aiheesta pidin itse valaisevana Wolf Singerin CERNissä pitämää puhetta.

https://www.tiede.fi/keskustelu/45601/ketju/rasanen_sekoilee_fysikaalisessa_analogiassaan_tahdosta

 

Ja täällähän yksi pläjäys CERNin nimissä onkin... (ONKOHAN SITTEN HIGGSIN IHKA OIKEASSA TODELLISUUESSA LÖYDETTYKÄÄN - PANEE JO EPÄILYTTÄMÄÄN... )

https://cerncourier.com/neuroscience-explores-our-internal-universe/
 

International journal of high-energy physics

Neuroscience explores our internal universe

Résumé

Les neurosciences explorent notre univers intérieur

Wolf Singer est un éminent spécialiste des neurosciences. Il est directeur de l’Institut Max-Planck pour la recherche sur le cerveau de Francfort et il est très soucieux de communication. À l’inverse des physiciens du CERN,qui construisent des détecteurs au câblage très complexe pour étudier les collisions de particules, Singer, avec ses collègues, essaye de décoder la dynamique du «câblage» du cerveau, où quelque 1011 neurones sont reliés par 1014 «fils». De plus,la recherche montre à présent que l’ensemble constitue un système très réparti sans gestion centrale.À l’occasion d’une visite au CERN, Singer évoque avec Carolyn Lee ses recherches sur les mystères du cerveau, et sa passion pour la communication.

When physicists at CERN try to understand the basic building blocks of the universe, they build gigantic detectors – complex, intricately wired instruments that are capable of measuring and identifying hundreds of particles with extraordinary precision. In a sense, they build "brains" to analyse the particle interactions. For prominent neuro-scientist Wolf Singer, director of the Max Planck Institute for Brain Research in Frank-furt, the challenge is quite the opposite.He and other researchers are trying to decode the dynamics of a mass of intricate "wiring", with as many as 1011 neurons connected by 1014 "wires". The brain is the most complex living system, and neuroscientists are only beginning to unravel its secrets.

CCint1_04_08.jpg

Wolf Singer

Until recently, according to Singer, the technical tools available to neuroscientists were rather primitive."Until a decade ago,most researchers in electrophysiology used handmade electrodes – either of glass tubes or microwires – to record the activity of a single element in this complex system," explained Singer. "The responses were stu-died in a meticulous way and it was hoped that a greater understanding would arise of how the brain works. It was believed that a central entity was the source of our con-sciousness, where decisions are made and actions are initiated. We have now lear-ned that the system isn’t built the way we thought – it is actually a highly distributed system with no central coordinator."

Myriads of processes occur simultaneously in the brain, computing partial results. There is no place in this system where all of the partial results come together to be interpreted coherently. The fragments are all cross-connected and researchers are only now discovering the blueprint of this circuitry.

This mechanism poses some new and interesting problems that have intrigued Sin-ger for many years. How is it possible for the partial results that are distributed in the brain to be bound together in dynamical states, even though they never meet at any physical location? Singer gives the example of looking at a barking dog. When this happens, all 30 areas of the cerebral cortex that deal with visual information are acti-vated. Some of these areas are interested in colour,some in texture,others in motion and still others in spatial relations. All of these areas are simultaneously active, pro-cessing various signals and applying memory-based knowledge in order to perceive a coherent object. A tag is needed in this distributed system at a given moment of time so as to distinguish between the myriads of neurons activated by a particular object or situation, and those activated by simultaneous background stimuli. In 1986 Singer discovered that neurons engage in synchronized oscillatory activity. His hypothesis is that the nervous system uses synchronization to communicate.

Singer stresses that researchers in his field are closer to theorists in high-energy phy-sics, because the tools necessary to decode the large amount of data generated by the brain’s activity do not exist yet. "This morning when I toured the ATLAS experi-ment, I heard how the data generated at the collision point is much richer, but physi- cists use filters to extract the most interesting data, which they formulate in highly educated ways," said Singer. "The amount of data generated by the sensory organs is more than the brain could digest, so it reduces redundancy. Due to this enormous amount of data, the brain, by evolution, developed a way to filter it all. The most im-portant information for us is based on survival, such as where food can be found or how our partners look."

Brain function and communication

Singer began his career as a medical student at the Ludwig Maximilian University in 1962 in his hometown of Munich. He was inspired to specialize in neuroscience after attending a seminar by Paul Matussek and Otto Creutzfeldt, who discussed schizo-phrenia and "split brain" patients. After his postgraduate studies in psychophysics and animal behaviour at the University of Sussex, he worked on the staff of the Department of Neurophysiology at the Max Planck Institute for Psychiatry in Munich and completed his Habilitation in physiology at the Technical University of Munich. In 1981 he was appointed director at the Max Planck Institute for Brain Research in Frankfurt and in 2004 he co-founded the Frankfurt Institute for Advanced Studies.

The 20th century brought many advances in fundamental physics, including the dis-covery of elementary particles.During this same period, neuroscience provided grea- ter illumination of the brain’s functions. One of the most significant is the identification of individual nerve cells and their connections by Camillo Golgi and Santiago Ramón  y Cajal, winners of the Nobel Prize for Medicine in 1906. Another important advance was the introduction of the discontinuity theory, which regards neurons as isolated cells that transmit chemical signals to each other. This understanding allowed neuro-scientists to determine the way in which the brain communicates with other parts of itself and the rest of the body.

Some of the results of the first studies of the relationships between function and the different areas of the brain were made using patients injured during the First World War. Later, with the discovery of magnetic imaging to study brain function, resear-chers were able to turn to non-invasive methods, but there is still much more deve-lopment needed. With procedures such as magnetic resonance imaging, a neurolo-gist can find out where a signal originates; but the signal is indirect, coming from the more oxygenated areas. A magnetic field of 3 T applied to an area of a square milli-metre can show which part of the brain is activated (e.g. by emotions and pain) and reveal the various networks along which the signals travel.

At the same time, neuroscientists are trying to decode the system and explain how biophysical processes can produce what is experienced in a non-material way – a meta-to-mind kind of riddle – with new entities and the creation of social realities such as sympathy and empathy. This is leading to a new branch of neuroscience, known as social neuroscience.

In other research, colleagues of Singer are studying the effects of meditation on the brain. They found that it creates a huge change in brain activity. It increases synchro- nization and is in fact a highly active state, which explains why it cannot be achieved by immature brains, such as in small children. Buddhist monks use their attention to focus the "inner eye" on their emotional outlet and so cleanse their platform of con-sciousness. In 2005 Singer attended the annual meeting for the Society of Neuro-science in Washington, DC, together with the Dalai Lama. Their meeting resulted in discussions about the synchronization of certain brain waves when the mind is highly focused or in a state of meditation.

Singer is also no stranger to controversy. His ideas about how some of the results of brain research could have an impact on legal systems caused a sensation in 2004. His theory that free will is merely an illusion is based on converging evidence from neurobiological investigations in animals and humans. He states that in neurobiology the way in which someone reacts to events is something that he or she could not have done much differently. "In everyday conditions the system is deterministic and you want your system to function reliably. The system is so complex and we are con-stantly learning new things",explained Singer. There are many factors that determine how free someone is in their will and thinking.Someone could have false wiring in the part of the brain that deals with moral actions, or perhaps does not store values pro-perly in their brain,or could have a chemical imbalance. All of these biological factors contribute to how someone reacts in a given situation.

Singer feels strongly that the general public should be aware of what scientists are working on and that enlightenment is essential."Science should be a cultural activi-ty", he said,adding that in society the people who are considered "cultured" generally are knowledgeable in art, music, languages and literature, but not well versed in mathematics and science.

In 2003 he received the Communicator Prize of the Donors’ Association for the Pro-motion of Sciences and Humanities and the Deutsche Forschungsgemeinschaft in Germany. Communicating his passion to the young has been a challenging and yet highly rewarding experience.He works to engage society in discussions about the re- search in his field,providing greater transparency and comprehension. His dedication to improving communication between scientists and schools is evident in the prog-ramme that he has initiated: Building Bridges – Bringing Science into Schools. This creates a stronger dialogue between scientists, students and teachers. • For Wolf Singer’s colloquium at CERN, "The brain, an orchestra without conductor", see indico.cern.ch/conferenceDisplay.py?confId=26835

About the author

Carolyn Lee, CERN

 

Keskustelua:
 

Tokkura
Viestejä5942

"TIETEEN" "tiede"kolumnistina toimineen hölynpölytiedetoimittaja Räksy Sysäsen muka "FYYSIKKO JOKA TODISTI VAPAAN TAHDON MAHDOTTOMAKSI" Wolf Singer EI OLE FYYSIKKO OLLENKAAN,vaan LAMA-BUDDHISTISEN MIETISKE- LYKESKUKSEN JOHTAJA,joka oli Max Planck Instituutissa mietiskelyasiantuntija-na,kun sen mahdollisia aivovaikutuksia tutkittiin! Sieltä hänet sitten saatiin puliveivat- tua kerran luennoimaan CERNissä, ja tästä olemattomasta "idusta" uskonlahko ja jotkut muut räjäyttivät maailmalle ennenkuulumattoman infostokampanjan käytännössä täysin tyhjästä!

Hän on samaa porukkaa kuin taannoinen suurtiedevilppikäry Marc Hauser, rotumur-hageeni"professori", "Instituutin" toimitusjohtaja R. Adam Eagle (se on muodollisesti tietysti yritys), YLEn "Ylin Auktoriteetti" haistapaskantiedetoimittaja Kiley Hamlin ja tietysti Tenzin Gyatzo eli Dalai Lama. (Minä nimittäisin noita hirohitoisteiksi, ainakin varmuuden vuoksi... Oppi on ainakin osin peräisin Hirohiton rintamapropagandasta.)


https://www.tiede.fi/blogit/maailmankaikkeutta_etsimassa/kumman_totuus

Räksy: " Kumman totuus

klo 2:09 | 30.4.2010

Kirjoitin edellisessä merkinnässä siitä, miten virheellinen arkikäsityksemme maail-masta on kvanttimekaniikan valossa.Toinen modernin fysiikan peruskivistä, suhteel-lisuusteoria, on yhtä lailla kummallista. (Peruskivien yhteen muuraamisesta, ks. Maljan jäljillä.) Siinä missä kvanttifysiikan omituisuudet liittyvät epädeterminismiin, suhteellisuusteoria osoittaa, miten väärä on yksinkertainen käsityksemme ajasta ja avaruudesta.

... Aivojemme intuitiivinen kuva ajasta, avaruudesta ja aineesta on perusteiltaan täy-sin virheellinen, vaikka kuvaakin arkisia ilmöitä tarkasti. On kiehtovaa, että samanlai-nen tilanne tulee vastaan tarkasteltaessa aivojemme käsitystä monimutkaisimmasta tunnetusta fysikaalisesta systeemistä, ihmisaivoista itsestään. Meillä on intuitiivinen malli siitä, miten ajattelemme ja teemme päätöksiä: esimerkiksi koemme että meillä on vapaa tahto. Tutkimus on kuitenkin osoittanut tämän kuvan olevan harhainen siinä missä luulomme aika-avaruudesta. Tästä aiheesta pidin itse valaisevana Wolf Singerin CERNissä pitämää puhetta. ”

Singerin hölötyksessä eiole mitään järkeä. Onmahdotonta sanoa, onko Räksy (joka EI TODELLAKAAN OLE TIETEELLISEN PENAALIN TERÄVIMPIÄ KYNIÄ!) tuossa "taitava" salafasisti (vasemmistoharrastusket kuuluvat toimenkuvaan) vai onko hän vain patatymä "tiedoton" vahingollinen idiootti tuon hirohitoisti-valetiedemafian salaetäohjauksessa.

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327521/

Logo of emborep
EMBO Rep. 2007 Jul; 8(Suppl 1): S16–S19.
PMCID: PMC3327521
PMID: 17726436
Science and Society

Understanding the brain

How can our intuition fail so fundamentally when it comes to studying the organ to which it owes its existence?
 

People find it difficult to get into their heads what goes on in their heads: how billions of nerve cells, working in parallel on individual tasks in separate areas of the brain with no coordinating supervision, are nevertheless able to assemble sensual input into coherent perceptions of the world, create decisions and come up with new ideas. How can our intuition fail so fundamentally when it comes to studying the organ to which it owes its existence — that is, when it comes to understanding how the brain works? We imagine that there is a central entity at work in our heads, which we equ-ate with our conscious self and that has all the wonderful abilities that distinguish us as humans. This intuition imposes itself so persuasively — even overwhelmingly — that it is not surprising that,throughout our cultural history,scientists and philosophers have speculated as to where in the brain this all-powerful and all-controlling entity might be.

7400994-i2.jpg

 

The plausible assumption was that there must be a single location where all informa- tion about our internal conditions and environment is made available, decisions are taken and actions are initiated. Even Descartes - who considered mental processes to be superior to,rather than connected to, material processes in the brain, and whose free-floating res cogitans would therefore have needed no circumscribed location — did not believe that it was possible to get by without a singular localizable controlling entity.

The contradiction between this assumption and the scientific evidence that has arisen since the time of Descartes could hardly be greater. Studies of the structural and functional organization of the brain have shown that this organ is, to a large extent, decentralized, and processes information in parallel in countless sensory and motor subsystems. In short, there is no single homunculus in our brains that controls and manages all these distributed processes.

This is true for the functional organization of the cerebral cortex, which represents the last major step in the evolution of brains: there have been no further key structual innovations since it first appeared in lower vertebrates. The volume of the cortex has grown continuously over the course of evolution, which has drastically increased the complexity of its networking possibilities,but the internal connections between the new areas are identical to those found in lower vertebrates.The progressive differen-tiation of cognitive activities is therefore based primarily on an enlargement of the ce-rebral cortex. Its invention is apparently one of the greatest achievements of evolu-tion: an information-processing entity that handles all the manifold and diverse tasks that higher organisms with complex behaviour and social systems must manage.

However, if there is no central entity operating at a higher level, how do we explain the rise of human culture and civilization, Shakespeare's Romeo and Juliet, Beetho-ven's Ninth Symphony, Kant's moral principle or the quest to understand the mea-ning of life? More specifically, how is cooperation among the many billions of cells coordinated? How can the brain as a whole form distributed activity patterns, how do these processes create coherent perceptions and how does such a system make decisions? How does this organ know when the various subprocesses have reached a result and how does it assess the reliability of such results?

…how do we explain the rise of human culture and civilization, Shakespeare's Ro-meo and Juliet, Beethoven's ninth symphony, Kant's moral principle or the quest to understand the meaning of life?

 

The initial answer to these questions is that evolution has obviously equipped the brain with mechanisms that allow it to combine numerous subprocesses into global ordered states without a central coordinating entity. However,we are still far from un- derstanding the principles by which distributed processes in the brain assemble into coherent states that then act as the substrates of perception, concepts, decisions and actions.

One hypothesis centres on the problems that occur when the brain processes visual signals. Owing to their specific interconnections, nerve cells in the visual cortex of the brain react selectively to elementary features of visual objects, such as contours, tex-tures,colour contrasts and movements.Neurons at higher processing levels then res- pond to combinations of these elementary features. Initially, this led to the idea that the association between elementary features and representations of entire objects was achieved by cells at the highest level of the processing hierarchy, which respond selectively to particular constellations of individual objects and their features.

So, for every perceivable object,there should be a specialized nerve cell in the visual cortex that signals the existence of this object; however, it was never possible to con-firm this experimentally. In fact, nature chooses this option only in exceptional cases at best — specifically to represent frequently occurring or meaningful objects. Other-wise, this strategy would require an astronomical number of highly specialized cells to represent all perceivable objects in their various forms. It would also mean that we would be incapable of perceiving objects that humans have never seen before, as this would imply the unimaginable possibility that evolution was provident enough to create appropriately specialized cells.

In fact, highly developed brains use a more flexible strategy. They represent objects of perception — whether sensed visually, acoustically or tactilely — through many si-multaneously active neurons, which individually encode a partial aspect of the whole.

The neuronal counterpart of any object therefore consists of a spatiotemporally dis-tributed excitation pattern in the cerebral cortex,produced in each case by numerous cells. Similarly to the way in which a limited number of letters yields a vast collection of words and sentences, the recombination of neurons,each of which encodes indivi- dual elementary features,makes it possible to represent an infinite number of objects — even those that we have never seen before. However, this strategy requires that the excitation pattern relays two messages at once: the neurons must report that the special feature they encode is present in the field of view,and they must also indicate with which other neurons they are currently cooperating.

…the recombination of neurons, each of which encodes individual elementary fea-tures, makes it possible to represent an infinite number of objects — even those that we have never seen before

 

More than a decade ago, scientists discovered that neurons in the visual cortex can synchronize their activities with a precision of a few thousandths of a second, usually generating rhythmic oscillations at a frequency of around 40 Hz. This was followed by the important observation that nerve cells, particularly when they are co-involved in encoding a single object, synchronize their activity. These observations led to the conclusion that this precise synchronization of neuronal activities,for which cells have temporarily joined to form functionally coherent ensembles, represents the neuronal signature of a given object.

As is so often the case,the original discovery merely uncovered the tip of an iceberg. It is now becoming clear that the neuronal synchronization phenomena are far more important.In the years after the discovery of synchronous oscillatory responses in the visual system, an increasing number of laboratories has used multi-site recordings of neuronal activity to investigate the temporal coordination of distributed neuronal res-ponses. This has revealed that the oscillatory pattern of neuronal activity and the syn-chronization of rhythmic discharges are ubiquitous phenomena in the nervous sys-tem, and, with all likelihood,are involved in many cognitive and executive functions. This indicates that synchronization facilitates signal propagation in neuronal net-works with sparse connectivity, such as the cerebral cortex. Moreover, recent data indicate that synchronization of oscillatory activity selectively facilitates the exchange of information between cortical regions that oscillate in the same rhythm (Singer et al, 2007).

These findings have led to the conclusion that synchronization can be used: to de-fine, with high temporal precision and flexibility, the relationships between distributed responses, and to bind them together for further joint processing; to select respon-ses for further processing; to support the selective routing from sender to receiver within distributed networks; to bind responses from different sensory subsystems into cohe-rent representations; to establish connections between sensory and executive struc-tures; to maintain contents in working memory; to strengthen associations between synchronously active cell assemblies by synaptic plasticity; and to support the formation of activity patterns that have access to conscious processing.

The findings of recent studies on patients with schizophrenia have yet another — possibly even more exciting — implication: that the synchronization of neuronal acti-vities in these individuals is flawed and imprecise (Uhlhaas et al, 2006). If synchroni-zation does in fact coordinate neuronal operations that are spatially distributed and that take place in parallel, it would explain some of the dissociative phenomena that characterize this puzzling disease.

Regardless of how we explain the diverse coordination problems in our decentrally organized brains, one thing is already clear: the dynamic states of the many billions of linked and interacting neurons in the cerebral cortex reveal a degree of complexity that surpasses anything we can imagine. This does not mean that we cannot or will not develop analytical methods to identify these system states and to track them chro-nologically; however, the descriptions will be abstract and vague, and will bear no similarity to our familiar perceptions and concepts that are based on these neuronal states.

…the dynamic states of the many billions of linked and interacting neurons in the ce-rebral cortex reveal a degree of complexity that surpasses anything we can imagine

 

To our intuition, it seems alien that the neuronal correlate of what we perceive as a solid tangible object is a highly abstract,spatially and temporally structured excitation pattern, and that not only three-dimensional objects but also smells, feelings and in-tended actions are represented in this way. Moreover,every such representation cor- responds to one of a vast number of possible states, or,to put it differently,the cereb- ral cortex system continuously moves from one point to the next in an inconceivable multidimensional space. This trajectory - that is, the trail of this movement - depends on the entirety of all internal and external factors that have an impact on the system.

…the cerebral cortex system continuously moves from one point to the next in an inconceivable multidimensional space

 

During its progression through this multidimensional state space, the system conti-nually changes because its functional architecture is constantly altered by the expe-rience it gains along the way.Therefore,it can never return to the same location. This explains why we experience time as irreversible. The second time we see a certain object, it affects a different dynamic state to the first time; we recognize it as being the same object, but the new state also reflects the fact that we have seen it before.

These deliberations hint at the abstract descriptions we will need to gain a deeper understanding of the processes that take place in the brain. This brings us back to the question of why our imagination is so ill-suited to understanding these processes in the brain and, therefore, its own foundations.

This inability is presumably caused by our limited cognitive abilities, which evolved in a world in which there was no advantage to be gained by understanding nonlinear complex multidimensional processes.The dimensions of animals with a nervous sys-tem range from millimetres to a few metres, and their cognitive and executive func-tions have adjusted accordingly to compute interactions between objects of this mag-nitude. The world as we perceive it is governed by the laws of classical physics that describe solid bodies, causal interactions, and absolute coordinates of space and time, which are sufficient for understanding most processes that are important to us. Presumably for that reason, the laws of classical physics were discovered before the laws of quantum physics.

However, as with quantum mechanics,we can indeed observe processes that contra- dict our concepts of causality and linearity, although we find it difficult to grasp intui-tively the laws behind them. The reason why we are so inept at imagining nonlinear interactions might be that, as living beings,this ability would have been of little advan- tage to us. After all, organisms benefit from creating models of the world only if these models allow them to make accurate predictions. In highly nonlinear dynamic sys-tems, this is not possible; their future development cannot be predicted,even if all the starting conditions are known. So, there would presumably be no selective pressure for the development of cognitive functions that allow us to comprehend nonlinear dynamic processes.

This limitation of our cognitive skills could explain why our intuition has developed ideas about the organization of our brains that are at odds with the scientific descrip-tions of this organ. If we assume that our brains operate in the same way as linear systems — such as the way a clock works — we must also assume that a creative mover interferes with this system to endow it with properties such as openness, creativity, intentionality and limited predictability.

However, in complex,nonlinear and self-organizing systems,these properties emerge naturally from the dynamics of the system and need not be invoked by an additional conductor. The human brain undoubtedly constitutes the most complex system in the known universe — here, ‘complex' does not mean simply complicated, but instead designates specific characteristics of a system comprising many indivi-dual active elements that interact in special ways. Such systems can produce quali-ties that are creative and cannot be derived from the characteristics of the compo-nents alone: they can take on a vast number of states in multidimensional spaces to create new unpredictable patterns.

So,why did evolution create brains with these properties when they are primarily con- cerned with analysing linear processes? The answer to this question must - at least for the time being - remain incomplete because we are just beginning to understand the organizational principles of our brains. It is becoming clear, however, that evolu-tion was counting on the particular flexibility of complex nonlinear systems. After all, they can come up with much more elegant solutions to problems in information pro-cessing than can linear operations - for example,by recognizing patterns, forming categories, associatively linking large quantities of variables and making decisions.

The ingenious trick is to transpose the low-dimensional signals from our sensory or-gans into high-dimensional states,to process them in this state and then to transform the results back to the low-dimensional space in which behavioural reactions occur. It is interesting that we have no insight into the high-dimensional nonlinear processes in our brains and perceive only the low-dimensional results. That is why we imagine that the same linear processes that we attribute to the observable phenomena in the world also take place in the brain - and that is presumably the reason why we believe that there must be a central control entity at work in our brains.

…no planner, however astute they might be, could ever have designed systems that are as complex as the human brain or our social structures…

 

Linear systems cannot organize themselves. They are not creative.They move in un- changing circles, and creating a new system therein requires external manipulation — a mover. Because we assume linearity, but experience ourselves as creative and intentional, our intuition leads us to the false conclusion that there must be a higher controlling entity in our brains that coordinates all the various distributed processes and creates impulses for new ideas. Moreover, as we are incapable of grasping this virtual entity, we ascribe to it all of the immaterial attributes that we associate with the concept of self—namely, the abilities to have initiative, to want something, to decide and to invent.

This speculation might serve as a warning whenever we interfere with the dynamics of complex systems, whether intentionally or out of necessity.Most areas of the living world that comprise numerous active and interacting components are complex sys-tems that exhibit highly nonlinear dynamics — from social and political systems to financial markets and biotopes. By acting, we inevitably become active components of these systems, and our actions promote their dynamics and future development.

This confronts us with a serious problem.Because we lack the intuition to understand nonlinear behaviour and therefore focus primarily on linear models,we tend to under- estimate the capacity of these systems to self-organize, but at the same time overesti- mate our ability to control them. As a consequence,we assume that the most effective strategy for stabilizing and controlling these systems is to establish central entities that regulate the distributed processes and steer the system in the desired direction. A glance at the hierarchical structures in our social and economic systems suffices to demonstrate that we are only too willing to follow this intuition and to put it into action.

But this raises the question of whether we can trust these central regulatory entities and whether we overestimate them by expecting more than they are able to deliver, even under optimal conditions.For fundamental reasons,the development of complex systems is open and difficult to forecast, even when the starting conditions are fully known. For the same reasons, it is difficult to foresee how any intervention or control will affect the behaviour of a complex system.

Under these circumstances, it is prudent to investigate carefully the dynamics of the respective system before installing institutionalized control mechanisms. If it is a straightforward system with primarily linear dynamics, then hierarchical structures might be appropriate. If, however, the system is highly complex with strong nonlinear behaviour,then we should rely on its self-organizational power and creativity, and not succumb prematurely to the illusion that we can selectively intervene. In this case, it is advisable to structure interactions and information flows in such a way that the self-organizing mechanisms can develop optimally.

Nevertheless, it is good news that the systems we encounter in the living world were able to develop to their state of high complexity but remain tolerably stable. It should encourage us to trust more in their robustness and their ability to self-organize: no planner,however astute they might be,could ever have designed systems that are as complex as the human brain or our social structures, or have done so in such a way that they would work and remain stable over such long periods.

References

  • Singer W, Nikolic D, Fries P (2007) The gamma cycle. Trends Neurosci, in press [Google Scholar]
  • Uhlhaas PJ, Linden DE, Singer W, Haenschel C,Lindner M, Maurer K, Rodriguez E (2006) Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci 26: 8168–8175 [PMC free article] [PubMed] [Google Scholar]

Articles from EMBO Reports are provided here courtesy of The European Molecular Biology Organization

 

***

https://ristojuhanikoivula.vuodatus.net/lue/2025/01/eras-aivoteoria

lauantai, 25. tammikuu 2025

Eräs "aivoteoria"...

file:///C:/Users/Huawei/Downloads/InfoComp.pdf

" See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/14238699

42 PUBLICATIONS 299 CITATIONS


Impact of information compression on intellectual activities in the brain


Article in International Journal of Neural Systems ·

October 1996
Source: PubMed

CITATIONS 0
READS 103

Screenshot%202025-01-29%20at%2021-41-59%
1 author: Jarl-Thure Eriksson
Åbo Akademi University

" ...In Eriksson's view, the understanding and modelling of complex systems required better understanding of the human mental functions. In his article “Impact of informa-tion compression on intellectual activities in the brain” in 1996 Eriksson presented an information theory based model for cognition. According to the model, humans per-ceive the real world through the representations of neural networks that are formed by cumulating experiences and learning processes. When brain functions are active, the cerebral cortex processes large volumes of information. Conscious thought is a result of a massive information compression process, which originates from external sensations, such as sight and hearing, or from internal thoughts or associations, and is governed by the context and the emotional state. The condensation of relevant in-formation,which takes place in the subconscious,generates instructions for reactions as well as new cognitive input for the cortex.

A conscious thought itself should be considered as the control feedback of what the subconscious has already determined. "

RJK: Bullshit.

 

" Impact of information compression on intellectual activities in the brain


Jarl-Thure Eriksson

Paper published in the International Tampere University of Technology Journal of Neural Systems, Vol. 7,
Email: j[email protected] No 2 (September 1996) pp. 543-550


"What is...is identical with the thought that recognizes it"


- Parmenides of Elea, ca. 480 BC1
 

Imaging and modelling represent an action of information compression, which is inevitable for a complex system in order to process and communicate data. Humans are such complex systems. Sensory and body reaction information is processed by the brain, the overall infor-mation rate being 10^11-10^12 bit/s. Consciousness is the result of massive information compression, the attentional data rate being 10-14 bit/s. The primary purpose of the conscious state is to control the interaction with the environment. In humans, this ability facilitates the projection of the future horizon far away from the next instant.

Thinking and reasoning can be thought of as a process of retrospective control. Retrospec-tive in the sense that the subconscious has already decided what is to come next. "

 

RJK: If "subconscious has already decided", the "decision" is not concscious at all.

This is the false "Benjamin Libet´s theory of consciousness", based on Hans Berger´s Nazistic  "physical conciousness" pseudotheory.

This crucial mistake is enough to make the whole presentation bullshit.
Consciousness is not coded in digital form in the brain. It is not like genetic code.

J.-T.E.: " In the long run, however, conscious thought influences the cortical context potentiation, thus providing steering to the associative
process. The paper emphasizes that all cognitive operations are restricted to the bioelectrical signal processing in the brain.

Accordingly, mental models and scientific theories will always be constrained by this fact. The last subject of this paper deals with the interaction between the brain, the glands and the rest of the body. It is interpreted that qualia are the result of a complex feedback interaction between those parts, a self-supported process close to a singularity point.


1. Scope and objectives


All biologic organisms form complex systems wherein millions of internal functions strive towards a simple output. By simplicity we refer to the amount of information needed to perform a certain action as compared to the information used in the internal processes. The primary outputs aim at securing the continuity of the organism by self-preservation and re-production. In this paper we attempt to present a holistic model of the information interplay between on one hand a human being and the environment and on the other hand brain centers and the rest of the body. Due to natural selection the hierarchial structure of infor-mation flow is brought to optimal rationality, meaning that subsystems are controlled partly by internal signals and partly by communicated information. This can be considered as a general feature of a complex system, namely that subsystems of partial independence form a resource flow network while coordination and coherence is provided by an information network. Hence it is natural to consider biological systems as fundamental study objects for complexity. On the other hand, universal regularities of emergent self-organizing physical systems can be applied to living entireties. "

 

RJK: Eriksson käyttää sanaa emergentti kari enqvistiläisessä redukstionistisessa hö-lynpölymerkityksessä "heikkona emergenssinä", joka oli tieteessä pelkkiä metodisia "kuvausten ominaisuuksia" ilman todellista materiaalista sisältöä.

2

J.-T.E.: One main interest of this paper will be to consider the human being as a part of a community.Why is he or she acting in accordance with social agreements? What is the minimum information exchange needed? Which are the internal mental requirements for a successful interplay? These are questions we try to tackle. Simultaneously we will touch some of the most intriguing issues of the human mind, consciousness, intentionality and self-awareness.


What purpose do these characteristics have? - presently a mainstream question, to which we will not find a commonly accepted answer. Here, however, we shall prag-matically claim that consciousness is a continuous process of displaying strategies for action. "

RJK: Aivokuorellisten eläinten tajuisuus voitaneen ilman periaatteellista virhettä ym-märtää noin. Ihmisen kielellisrakenteinen tajunta, Ivan Pavlovin 2. signaalisysteemi, on kuitenkin monimutkaisempi juttu, koska se on omaksuttu isolta osin kieliyhteisön osapuoleen samanlaisesta tajunnasta ja se on ihmispersoonallisuuden emergenssi-tasoltaan sosiaalinen olemassaolomuoto, joka ei "palaudu" eli redusoidu biologiaan eikä fysiikkaan.


J.-T.E.: " The comparison to virtual reality simulation is very tempting, but the process is far more complicated than running a computer model in order to look into a future scenario.

Consciousness is the result of a massive compression of information wherein incoming sensory signals alert different centers by creating recognition patterns of objects through vision, sound, smelling, feeling or whatever the stimulation might be. The primary purpose is to control action or rather, reaction. This ability has, due to the development, reached a very high level in humans facilitating the transfer of the future horizon far away from the next instant.

Intentionality can be characterized as an agenda for "keep going". That is an inbuilt arrow of action, which helps to maintain conscious continuity,but which also prevents the individual from reaching equilibrium, ever. This has also to do with the self-organizing process of thinking always taking place in the brain.

Self-awareness brings us close to the virtual reality scenario. By self-awareness we are able to observe ourselves as objects in different imaginative situations. Remem-bering means time travelling backwards, while planning the next vacation transfers us several months ahead in time. Self-awareness has to do with the human ability to operate consciousness with the assistance of concepts, which in themselves are compressed information of miscellaneous entireties.

The last point to be considered is that human beings form very complex systems comprising both bioelectrical and biochemical signalling for internal communication. The brain, the body and the body glands exhibit a wholeness that is provided with a multitude of interconnected feedback loops. The over all behavior of the individual will be synergetic to it's character meaning that there is no analytic algorithm descri-bing the relation between inputs and behavior. Instead initial sensory signals will always be confronted with a new system, the behavior of which depends critically on the previous state and the emergent trajectories of brain functions. Internally the feedback loops between brain, glands, heart, lungs etc. form an undisconnectable entirety as long as we talk about a living creature. These loops are most probably responsible for "non-computational" features such as emotions and pain.

 

2. Complexity


2.1 Information


The word "information" has a very wide use, often it is the substitute for "signal" or "data" or just a common message. Strictly interpreted information refers to the part of a message that is new to the receiver and that accordingly causes a reaction. "



RJK: This means stimulus signals in a reflex system.

 

J.-T.E.: " Without a reaction it will only be new memory data. However, it has been extremely difficult to define the minimum information needed for a certain message to be correctly interpreted in the receivers end. Considering disturbances in the transmission link there is always an uncertainty related to the process.

Complex systems are based on information exchange. Without the communication between individual parts connectivity and self-organization would never emerge. By fine-tuning the necessary flow of information a system is able to undergo a conti-nuous development and to oppose the growth of entropy. It is also flexible to outer changes, provided these are not catastrophic to their character.A catastrophe means that some input signal or some boundary condition changes too much too fast.

It is typical for a sophisticated complex system that the exchange information is co-ded in a way to maximize the capacity of the channels. The receiver utilizes as much memory data as possible.Todays coding in signal processing and telecommunication aims at a transmission of a complete representation of a certain message,e.g. a time dependent visual image. For comparison in oral communication between, say, a lec-turer and an audience, the word "sex" (approximately 6 bit) generates myriads of bits in the form of more or less emotional experiences in each listener capturing a lot of individual flavours. Future multimedia and virtual reality communication will be based on the transmission of solely new information. Context and background patterns will be locally stored and provided on request in the receiving end.


2.2 Information depth


In order to get a quantitive grip of the value of information several attempts have been made to define the the measure of "depth". Kolmogorov 3 tried to use the shortest string of information required to explain a phenomenon. But there is always many possibilities to shorten the string by using different algorithms, i.e. by compres-sing some of the information in, say, an equation. Charles Bennet 4 has investigated how much information is rejected during a process of compression by complexifica-tion. He coined the term "logical depth". Anyhow, there are many uncertainty factors related to the concept of information, accordingly one should consider all situations where information has to be interpreted as statistical ones.

3

In this paper we are interested in the compression of messages communicated between human beings. Our concern is: what is the shortest message, say M bit, to be transmitted in order to achieve the highest possible intended recognition among a certain population. For this purpose we can define a measure perceptional depth


D = (M.H)-1 (1)


where H is the Shannon information entropy function according to


H = - SIGpi log pi (2)


The interpretation of H depends on the specific case. Let me illuminate it's definition with two examples. A culturally homogeneous population is asked to list, say 5 com-posers, the question being of the form "famous composers?" (c:a 32 bit, avaraging 2 bit per letter due to redundancy). One could use only "composers?" (20 bit), then ad-ding more uncertainity,or specify "famous classic composers?" (50 bit). The answers result in certain distribution among, say, 20 (N) composer names. The factor pi (i = 1 ...N) indicates the probability for certain composer to get a vote, i.e. the ratio of the individual number of votes and the total number of votes. Complete concensus (all votes for Beethoven, N = i = 1, p i = 1) means infinite depth (H = 0).

The interpretation of this definition is that the most valuable situation for the sender of a message is such, that a majority of the receivers draw the right conclusions. A low perception depth value would indicate that very few people understood the meaning of a communicated concept. This measure could be used to penetrate the education level of a certain society or the mixing of two cultures.

The second example is related to pattern recognition by artificial neural networks (ANN). Take an input vector X, let Wi denote the set of weighting factors connecting X to the output vector Yi, Figure 1. Because Wi is determined according to an optimi-zation algorithm, very small discrepancies in the input X cause different recognition interpretations, i.e. alterations in Wi. Let p(Wi) denote the probability that an input X results in the set Wi.By letting M stand for the information content of X and using sta-tistical experimental data for p(Wi), we can calculate D according to equations (1) and (2). The result can be used for the evaluation of a specific neural network architecture.

5

Screenshot%202025-01-25%20at%2017-52-12%

Figure 1. Schematic representation of the probability of pattern recognition. The input X results with a certain probability pk(Wi) in pattern Yi. Distortions in X decreases the probability.

Although the perception depth might have little practical use, the previous examples hopefully serve as metaphors of the sensitivity of pattern recognition. Small noise factors on the input side can lead to completely different interpretations. This is one component for chaos in the brain. It also emphasizes the non-deterministic character of identification by neural computing. In unchanged "laboratory conditions" compri-sing identical input signals in subsequent experiments and stable hardware (ANN) the outputs should be deterministic.

In the real world, however, inputs are never the same and the recognition process in the brain is time and state dependent, meaning that previous states affect the outcome. If we add the idea that every recognition process follows an emergent self-organized agenda, we conclude that cognition never clings to an old track. It is the opinion of the present author that the seeds of non-deterministic, free-will, if one wants to, behaviour are to be found from these arguments. Erich Harth of Syracuse University advocates similar ideas in his book The Creative Loop 5. "

RJK: Free will is based on linguistic thinking, the 2. signaling system.


J.-T.E.: " 2.3 Computation in the brain


Marvin Minsky once coined the saying "the brain is a computer made of meat". This somewhat provocative statement goes to the roots of one of the most intricate ques-tions in the science of cognitivity. Namely, should mental processes be considered as computational? "

RJK: No.

J.-T.E.: " Part of the problem is that we as human beings are not objective enough to say YES. Traditions, emotional involvement, religious relicts, etc. prevent us from confessing that complicated signal processing is taking place in our heads. Things like "mind" and "self" enhance the confusion. But the facts are that cognition requires neurons firing electrochemical signals, i.e. processing information, and specialized brain centres, of which the cortex is necessary for reasoning and predictive thought functions.

6


Even minor tissue damage reflects deviations from what is usually considered as normal behaviour. However, computation in the brain is quite different from computing in a techni-cal sense. There is no stored program controlling signal paths. The algorithm is a built-in feature of the network structure. A cognitive task progresses through thousands of parallel, locationally distributed subcenter networks.

Artificial neural networks of today aim at imitating their biological counterparts. Working as identifiers or classifiers they come rather close, but functionally they are still very primitive. Artificial nets need strong computational support in performing procedures of optimization, back-propagation, etc.

How the brain handle these functions is not clear, but it seems reasonable to think that a self-organized emergent progression takes place on a very short time scale. Thus bioelectri-cal actions repeat in milliseconds what is biochemically going on on the million year time scale.

Finally,I will give some attention to modelling and simulation.A model is never the real thing. It is a representation utilizing different media to store information.The purpose of a model is to confine certain features of interest.Examples range from simple mathematical equations and numerical strings of information to sophisticated robotic models of living creatures. Simulation means performing experiments on models 6.

One must always be aware of the fact that in the attempt to create an understanding of a complex phenomenon, e.g. global finance or Theory of Everything, the modelling process in the brain is confined to bioelectric signals and the neural network structure.If the pheno-menon does not provide computable features meeting these constraints, an understandable description is not at hand.
 

3. The purpose of consciousness

3.1 Difficulties to define consciousness

Consciousness exhibits too many features to be fitted into a holistic description. As long as the physiological background of neural processes is incomplete,it is hard to believe that a sa-tisfactory theory will appear. Several philosophers on the subject have tried to define a site for consciousness 5,7.Although multiple cortex centres,assisted by the limbic system and the brain stem, are involved in a conscious process, one tend to expect that the summarizing stream of information must meet in a specific organ in order to provide awareness.Thalamus is a strong candidate,because it serves as the relay station of neuronal signals. However, we will not spend more time on this question, instead we shall recollect some relevant features.

7


It is typical for biologic neural signal processing - which has to do with the ultimate rationa-lity of natural selection - to focus on a small source of information and on the same time develop or maintain a larger area of dimmer information. This is how the eye works.

Consciousness can be characterized by a focus, i.e. attention, and a surrounding area of awareness. The awareness is not directly connected to the attentional focus, it rather de-pends on the context currently backing or illuminating the focus. However, from experience we know that signals from the awareness area try to catch the attention, thus providing steering on conscious progression. Awareness then reflects the competition taking place in the subconscious as a part of the information compression process.

Consciousness is normally an uninterrupted process that maintain a certain level of alert-ness despite different stages of rest (sleeping modes). The contrast with unconsciousness is very clear, even the influence of drugs on conscious behaviour is easily registered.
 

3.2 Cognition by recognition - how consciousness works


In this paragraph I will emphasize two hypothetical principles,namely, that all sensory signals must be recognized before entering consciousness and that thinking and reasoning are simulation processes aiming at the preservation of continuity.

As Parmenides deduced around 480 BC and John A. Wheeler later has focused on, "what is", i.e. reality, "is identical with the thought that recognizes it". German philosopher Imma-nuel Kant (1724 - 1804) emphasized in the late 18th century that sensory impressions pass through a process of apprehension,reproduction and recognition before reaching awareness . So, in order to recognize the reality of his surrounding an intelligent being has to find the equivalent representation from his memory. This is also the standard agenda for pattern recognition. In the attempts to characterize consciousness a metaphoric comparison to computer simulation has been promoted by several authors 8, 9,10. In short we can say that consciousness is a continuous result display of reality simulations, in which process impulses of recognized sensory (vision, auditory, etc.) signals synchronized the "computational" output with reality. The simulation generates a surge of associative initiatives, which follow the conscious focus trajectory as a spatial information tube (awareness) ready to provide new directions for the focus line on the request of sensory information. A naive representation of these functions is shown in Figure 2.

8

Screenshot%202025-01-25%20at%2018-04-35%


Figure 2. A naive diagram showing the principle of pattern recognition by image comparison (massive information) and the generation of associative incentives working as virtual sensory input signals. Here "perception" means subconsciously received, but not consciously identified.

The counter-connected monitors and videocameras symbolize the simultaneous pro-cessing of millions of bits. Different estimations suggest that the conscious focus in-formation stream is of the order 20...40 bit/s, while for instance visional input is 10^7 bit/s and the cognitive process involved in the interaction operates 10^10...10^11 bit/s 11.

The virtual reality model is convenient in several senses,e.g. it provides a tool to dis-cuss - and demystify - the interpretations of Benjamin Libets results of the timing of sensory and cortical stimuli 12. Further the model allows the mind to move freely in time and space during associative "free-wheeling", i.e.thinking, reasoning, dreaming, etc. "

RJK: Bullshit.

J.-T.E.: "However,as for all metaphors, one has to be cautious with the interpretations, the brain is not a computer in the normal sense that perform sequential logic opera-tions according to a given algorithm. Simulation in the brain is based on massive neural feedback processes, an instant awareness pattern associates to the next and so on in an infinite chain. The neural networks of the brain do not compute weight factors.

Actually, they do not perform algebraic computations at all. Externally excited mathe-matical operations follow learned patterns, we simply recollect that two plus two equals four or seven times eleven is seventy seven. We still know very little about the dynamic operation of the brain. "Programming" is a self-organized generic pro-cess,which would be very useful to understand.Artificial pattern recognition and neu-ral computing require time consuming optimization, the brain sorts out the essential information of a visual sensation in 300 ms compressing an information stream of 10 million bit/s to 40 bit/s.

9


3.3 Linguistic compression


Verbal communication between two persons is based on extremely effective com-pression. The speaker and the listener ought to have the more cultural "fitness" the deeper the conversation penetrates a specific subject. Here the words really works as the synchronization impulses for individual virtual reality simulations. Figure 3 illustrates how a visual experience is mediated verbally by "me" to a second person, "you". The scale to the left indicates the order of magnitude of information involved at each stage. As pointed out before, the conscious thought and verbal message operate very little information. A precise interpretation requires a rich language and generally accepted semantics. The development of consciousness and especially the the extent of the awareness region is probably closely connected to the emerge of a spoken language. Words create context entireties in the subconscious, accor-dingly enhancing the ability to confine large information quantities during reasoning or developing an understanding for a complex phenomenon. Words are not only the unit blocks of communication,they also "transport" information between the subcons-cious and awareness. In conclusion we can establish that verbal communication has led to extended awareness and the emergence of meaning, i.e. informational depth.

Screenshot%202025-01-25%20at%2018-11-27%

Figure 3. The stream if information at different levels of cortical activation. As an example the me-person verbally informs the you-person what he is seeing.

 

10

Screenshot%202025-01-25%20at%2018-14-30%


Figure 4. The "time travelling" space of the human mind.

3.4 Self-awareness


If the language made it possible to consciously handle larger amounts of information it also speeded up the processing,maybe created the pre-requisites for reasoning. At some point, either through a gradual or a transitional process, reasoning changed to a virtual reality type operation, wherein the subject suddenly takes the role of an outside observer, the self. This finally liberated the individual from confinement to real time, he saw himself as an actor in the model representation. Figure 4 shows schematically how extended awareness combined with knowledge facilitates the transference of the future horizon ever further away from the present.


4. Pain, pleasure and intentionality


4.1 The Turing rational actor model


The extended Turing machine13 is shown in Figure 5. Here the analyser/synthesizer is assumed to correspond to the conventional Turing machine. The left figure roughly indicates the equivalence between a biological being and the model.

The receptors do all kinds of sensing while the effectors act on the analysers command. Effectors are not only arms and legs, but hypothalamus, heart, lungs and digestion system as well. Effectors are supervised by the autonomic and the somatic nervous system, represented by the direct arrow to the receptor in the figure.

Effectors also influence the body glands, e.g. due to exertion. The whole system is in a strong interaction with the environment. Biologically the being is living on the terms of the surrounding or more precisely, natural selection has dictated the development of "actor" complexity.

11

Screenshot%202025-01-25%20at%2018-20-10%
 

Figure 5. The Turing rational actor model. (a) Schematic representation of the main signal systems of the body. (b) Compressed model indicating interactions and feedback loops.

 

4.2 Impact of biochemical feedback


Figure 5 indicates many interactions, the controlling function of the "analyser" (brain) is governed by a multitude of feedback loops working on different time scales. Con-trolling movements by eye-following requires fast reactions. Even biochemical feed-back via the glands can be very fast, take for instance the secretion of adrenaline in case of a threat or when a conversation rises emotions.Actually one reason for inclu-ding this paragraph is the belief that emotions, pain, joy, hunger, sexual arousal etc. all are the result of a complicated interplay between the brain and the rest of the bo-dy. The secretion of hormones affects the context potentiation of the brain, thereby giving steering primarily to the subconscious and secondarily the conscious mind. It is impossible to think of a computer feeling pain or depression. These characteristics must be the result of a feedback process tending towards a singularity point, mea-ning that the feeling of pain,like other emotions,amplifies itself and inhibits awarding functions of the brain like the secretion of endorphins. In the opposite situation of joy or pleasure, the endorphins and equivalent mechanisms are enhanced.

But these electro-biochemical actions are not enough to excite a state of partial or complete dominance on the individual. The interplay is reflected on the process of information compression in the subconscious, negative emotions seed virtual reality associations in a direction that enhances discomfort. Pleasant arousal in turn strengthen the emotional mood by awakening memories of similar experiences.

12

Actually all these reactions are continuously present to a certain degree. They are part of the irreversible self-sustainable process of being a living creature.

The influence of the body's biochemical responses on context formation, primarily mediated by the limbic system, is even more important than the influence of incoming sensory infor-mation. The context is responsible for the potentiation of certain cortical centres and accor-dingly for controlling the recognition process and further for the compression of information towards consciousness. The state of the individual as a whole will have a great impact on associative directions and the virtual reality scenarios ran for predictive purposes. The "self" is most probably the product of these interactions. A superficially sustained brain, "brain in a bowl", will not provide consciousness, because it lacks biological input. In principle such functions can be simulated by an artificial "back-up" system.
 

4.3 Intentionality


In this paper the word "intentionality" should be interpreted in a broad sense, ranging from incentive motivation to long term future planning. The expression "arrow of action" under-lines the character of dynamic continuation in all living beings. Temporarily sensory inputs provide stimulation for cognitive sustentation, but this kind of "computation" would once in a while come to a stop. There exists an inbuilt hierarchy of reference frames, which, depen-ding on the current context, initiate associative thoughts or, internal virtual reality simulations, if we wish. "

RJK: Bullshit. Thoughts are originally formed linguistically.


http://www.marxists.org/reference/archive/stalin/works/1950/jun/20.htm

a) N. Y. Marr divorces thinking from language;

b) N. Y. Marr considers that communication between people can be realized without language, with the help of thinking itself, which is free of the "natural matter" of lan-guage,free of the "standards of nature"; c) divorcing thinking from language and "ha- ving freed" it from the "natural matter,' of language, N.Y.Marr lands into the swamp of idealism.

It is said that thoughts arise in the mind of man prior to their being expressed in speech, that they arise without linguistic material, without linguistic integument, in, so to say, a naked form.

But that is absolutely wrong.

Whatever thoughts arise in the human mind and at whatever moment, they can arise and exist only on the basis of the linguistic material, on the basis of language terms and phrases.

Bare thoughts, free of the linguistic material, free of the "natural matter" of language, do not exist.

"Language is the immediate reality of thought" (Marx). The reality of thought is mani-fested in language.Only idealists can speak of thinking not being connected with "the natural matter" of language, of thinking without language. "

The "altenatives" for hypothetical "bare thoughts" "before they are dressesd in lin-guistic form" would be "thought-chemical" or fully non-material "Holy Spirit" in brain. Those are not scientific alternatives.


J.-T.E.: " The frames can be ranked according to the Maslow scheme 14 starting with short term needs as food and shelter and continuing with safety and affiliation (social needs). Needs for knowledge (cognitive), beauty (aesthetic) and self-actualization are topping the pyramid. The initiation of internal incentives starts from the lower levels and upon satisfac-tion continues towards higher values. One dominating ingredient in the intentional interplay is the "gradient of surprise", i.e. the need to mentally move towards unexplored grounds. This is clearly reflected by the tempting force of computer science and multimedia. In the intentional process both inherited behavioural and acquired ethical constraints have an important function.


5. Conclusions


The complexity of the Universe is characterized by self-similarity,order and organization. This fact facilitates modelling in as well mathematical as mental form. The human brain works with models utilizing neural networks and electrochemical signalling. The brain can only elaborate phenomena that provide enough patterns for modelling. The connection between reality and brain functions is established by pattern recognition.

13

Consciousness is based on memory information triggered by sensory stimulation, the major part of conscious experiences being the result of a continuous associative pro-cess comparable to virtual reality simulation.Steering is partly provided by the senso-ry input, but mainly by cortical context potentiation, which depends on emotions and history factors.

Self-awareness may be considered as a slow transitional occasion in the history of natural selection. Linguistic information compression has caused a radical expansion of attentional awareness, thus facilitating the conscious mind to operate large amounts of information represented by "sparse" concepts. Imagination has freed the individual from the instant of reality, whereby the future horizon has been extended from the next movement to the planning of the day, the week or the rest of the life. Issues presented in this paper must be considered in order to develop sophisticated artificial intelligence.


References


1. As cited by John A.Wheeler in Complexity,Entropy and the Physics of Information, Santa Fe Institute Series VIII, 1991, pp. 15.
2. Damasio, A.R.,Descartes' Error, Emotion, Reason, and the Human Brain, Grosset /Putnam Books, New York 1994.
3. Kolmogorov, A. N., Three Approaches to the Quantitative Definition of Information, Problems of Information Transmission, 1, 1, 1965.
4. Bennet, C., On the Nature and Origin of Complexity in Discrete, Homogenous, Locally-Interacting Systems, Foundations of Physics 16, pp. 585-592, 1986.
5. Harth,E.,The Creative Loop, How the Brain Makes a Mind, Addison-Wesley, 1993.
6. Cellier, F. E., Continuous System Modeling, Springer Verlag, 1991.
7. Penrose, R. , The Emperors New Mind, Oxford University Press, 1989.
8. Gregory, R.L.,The Oxford companion to the mind. Oxford Univ.Press,1987, pp. 94.
9. Eriksson, J.-T. et al., Order versus disorder - philosophical implications on compu-tability and modelling of complex processes. Proc. of NOLTA 1993, pp 799 - 802
10. Picton, T.W., et al., Neurobiology and conscious experience. Current opinion in Neurobiology 1994, 4, pp. 256 - 265.
11. Kupfmuller K., Grundlagen der Informationstheorie und Kybernetik. Physiologie des Menschen, Band 10, Urban & Schwarzenberg, Munchen 1971, pp. 191-231.
12. Libet, B. et al., Time of conscious intention to act in relation to onset of cerebral activity. Brain 106, 1983, pp. 623-642.
13. Turing, A.M., Computing machinery and intelligence. Mind 59, pp. 433-460, 1950.
14. Maslow, A. H., Motivation and personality, Harper & Row, New York, 1970. "